Hiroshige Matsuoka
Graduate Student.

Takahisa Kato
Associate Professor.

Department of Mechanical Engineering,
The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo,

113, Japan

An Ultrathin Liquid Film
Lubrication Theory—Calculation
Method of Solvation Pressure
and Its Application to the

EHL Problem

This paper describes a new method for calculating the solvation pressure that acts
between solid surfaces when the surfaces approach each other to within a very
small distance in a liquid medium. Solvation pressure is calculated by solving the
transformed Ornstein-Zernike equation for hard-spheres in a two-phase system with
Perram’s method and using the Derjaguin approximation. Furthermore, the authors
apply the new method to the elastohydrodynamic lubrication problem in which the
film thickness is very small and solvation force and van der Waals force cannot be
neglected. It will be shown that the calculation results agree well with experimental
data. The results are then compared with two conventional solvation pressure models
proposed so far, namely, Chan and Horn’s model, and, Jang and Tichy’s model. It
is found that these two models neglect the elastic deformation of solid surface when
obtaining the experimental parameter used in their models; thus they overestimate
the solvation pressure resulting in the prediction of larger film thickness than the

experiments.

1 Introduction

Machine elements are being downsized in recent years with
the advance of micromachining technology. In accordance with
this downsizing, the separation between surfaces that move rela-
tive to each other becomes smaller and smaller. For example,
in the case of a hard disk drive system of a computer, the flying
height of a magnetic head over a disk surface is approaching a
few or a few tens of nanometers, and a system in which the
head-disk interface is immersed in liquid lubricant instead of
air has been considered (de Bruyne and Bogy, 1994; Ikeda and
Tago, 1995). Therefore, knowledge concerning the characteris-
tics of very thin lubricant films will be indispensable as the
basis of key technologies in the near future (van Alsten and
Granick, 1988, 1990; Granick, 1991; Granick and Hu, 1994;
Granick et al., 1995; Peachey et al., 1991; Carson et al., 1992;
Homola, 1991; Homola et al., 1989; Israelachvili et al., 1988;
Georges et al, 1993(a), (b), 1995; Johnston et al., 1991;
Guangteng and Spikes, 1994, 1995; Smeeth et al.,, 1995(a),
(b); Spikes, 1995; Luo et al., 1995).

The authors developed a new apparatus which measures ultra-
thin fluid lubrication film thickness. As a result of the film
thickness measurements using the apparatus, the authors ob-
served discretization of the film thickness due to solvation force
when it is less than about 10 nm (Matsuoka and Kato, 1996).
Solvation force (often called structural force) is a unique force
which acts between two solid surfaces when the two surfaces
approach each other to very small distance in a liquid, and is
schematically shown in Fig. 1. From the several past experimen-
tal studies (Homola et al., 1989; Horn and Israelachvili, 1981;
Christenson, 1983) and theoretical studies, e.g., Monte Carlo
simulation or molecular dynamics (Tarazona and Vicente,
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1985; van Megen and Snook, 1979; Bitsanis et al., 1987), it is
known that the solvation force has the following characteristics:
(i) an oscillatory force which decays exponentially with surface
separation, and (ii) the period of the oscillation with surface
separation is roughly same as the diameter of intervening liquid
molecule. The solvation force which has such characteristics as
mentioned above is not negligible in the case of ultrathin film
lubrication. A lubrication theory considering the solvation force
is required in such a ultrathin film lubrication since the solid
surface will deform elastically, not only from the viscous force
but also from the solvation force. In this study, a new calculation
method of solvation force per unit area between planes (we call
the solvation force *‘solvation pressure’’ hereafter) is presented
first, and then the solvation pressures are considered in EHL
calculations and the calculated film thicknesses are compared
with experiments.

There are several EHL theories for thin fluid film proposed
by Tichy and coworkers, e.g., director model (Tichy, 1995(a)),
surface layer model (Tichy, 1995(b)), porous media model
(Tichy, 1995(c)) and exp-cos solvation pressure model (Jang
and Tichy, 1995). The authors select the last model of them
since others include unknown parameters which cannot be esti-
mated easily. Another exp-cos solvation force model proposed
by Chan and Horn (Chan and Homn, 1985) is also applicable
to the EHL calculation. These two solvation pressure models
are compared with the experiments and the calculation results
of the present model.

2 Pressures Between Solid Walls Separated by Ultra-
thin Liquid Film

In conventional EHL theory, film thickness and pressure dis-
tribution are obtained by solving the Reynolds equation and
elasticity equations simultaneously. The authors reported that
the measured film thickness deviates from the conventional
EHL theory and discussed the possibility that the deviation can
be attributed to solvation force when the film thickness is of
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Fig. 1 Solvation force, showing oscillation and exponential decay sche-
matically

the order of a few nanometers (Matsuoka and Kato, 1996).
Hence, as described in the Introduction section, an EHL theory
considering solvation pressure is necessary. Furthermore, in
case of ultrathin film thickness (about a few nanometers), a
pressure caused by the van der Waals force between solid sur-
faces (we call the pressure ‘‘van der Waals pressure’’) should
be considered. We assume that the total pressure, p, is composed
of three components, i.e., solvation pressure, p;, van der Waals
pressure, p..w, and conventional viscous pressure, p,, namely,

P=P;+Pvdw+Ph- (1)

The total pressure, p, in expression (1) is calculated simultane-
ously with the elasticity equations as in conventional EHL the-
ory. Calculation methods for these three pressure components
are mentioned in the following sections.

3 Solvation Pressure

3.1 BasicIdea. First; we consider how the solvation force
which has characteristics described in the Introduction section
is generated. The structure of liquid between solid walls is
shown in Fig. 2, in which circles denote molecules schemati-
cally. Considering density (number density ) of liquid molecules
between solid surfaces, the density under the condition shown
in Fig. 2(a) is higher than that of Fig. 2(b). The periodic
density change between solid surfaces in this manner with the
increase in surface separation generates periodically changing
force called solvation force (Tarazona and Vicente, 1985;
Snook and van Megen, 1979). Therefore, the solvation force
can be calculated by considering the density distribution be-
tween surfaces as a function of surface separation.

Now we consider a multiparticle system as shown in Fig. 3
and consider an interaction energy between particles. Taking
notice of any one of the particles in the system, we introduce
the radial distribution function, g(r), where r denotes distance
from center of the particle, by which the distribution of particles
in the system is presented. Interaction energy between the first

(b)

(a)

Fig. 2 Liquid molecules between solid walls. (a) dense; (b) dilute.
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Fig.3 One-phase system. The system is composed of one kind of many
particles (diameter o).

particle and another second particle with distance, r, is given
approximately by using a linear theory (Henderson and Lozada-
Cassou, 1986):

W= (r) = —ksT{g(r) — 1}, (2)

where s — s means interaction between a sphere and a sphere,
kg is the Boltzmann constant and T is the temperature in degrees
Kelvin. Expression (2) is the energy caused by structure of
multiparticle system (distribution of particles) as shown in Fig.
3, and we call it ‘‘solvation energy’’ or ‘‘structural energy.”
From the solvation energy written in expression (2), a net
solvation force which acts between the two particles (spheres)
with the distance r is given by

dw*(r)

dr (3)

F(r) = —

In order to convert a net force between spheres into a force

between planes per unit area, namely, pressure, the Derjaguin

approximation is often used. This approximation combines a

net force between spheres and a energy between planes per unit
area, and is written in

F*(r)
2mRe

W*P™(r) = 4

where p — p means interaction between a plane and a plane,
and R*'"is an effective radius of curvature of interacting spheres.
The Derjaguin approximation and rigorous expression of R*¥
are described in detail by White (1983). Finally, the force
between planes per unit area, F”77, namely, the solvation pres-

sure, p,, is obtained by the same relation as expression (3) and
is given by

R _ dWP_P( r) 1 dZWJ—.\-( r)
.= FPP(r) = — =
P " dr 27R® dr?
ksT d’g(r)
T 2nRF art ©

It is found that if the radial distribution function, g(r), is ob-
tained, then the solvation pressure can be calculated from ex-
pression (5). Therefore, the main problem is to obtain g(r).

Direct calculation method such as Monte Carlo simulation
and molecular dynamics (Bitsanis et al., 1987; Snook and van
Megen, 1980, 1981; Alder et al., 1955) have been proposed in
order to calculate the radial distribution function. The authors,
however, do not use these methods because considerable calcu-
lation time is required, but take a method by means of a statisti-
cal approximation, in which g(r) is given by an integral equa-
tion. In the present study g(r) is calculated from the integral
equation by supposing hard-sphere particles.

3.2 Example of Calculation of Radial Distribution Func-
tion in One-Phase System by Perram’s Method. We start
with calculation of the radial distribution function of a system
composed of one kind of particles of diameter o (we call the
system ‘‘one-phase system’’) shown in Fig. 3. There are several
equations for g(r) proposed for this system, e.g., Born-Green-
Yvon equation and convolution hypemetted chain equation
(Throop and Bearman, 1965), but in this study, the authors
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Fig. 4 Radial distribution function, g(x*), in one-phase system calcu-
Jated by Perram’s method. N = 100, p*o* = 0.8.

adopt the Ornstein-Zemike (OZ) equation, which agrees well
with the results of Monte Carlo simulation and molecular dy-
namics (Ornstein and Zernike, 1914; Wertheim, 1963, 1964).
The OZ equation for hard-spheres in a one-phase system is
given by (Perram, 1975)

h*(r) = c*(r) + p* f h*(lr — s|)c*(s)ds,

h*(r) = g(r) — 1, (6)

where A*(r) is the indirect correlation function, c*(r) is the
direct correlation function, and p* is number density of particles
when r = . Wertheim (Wertheim, 1963, 1964; Smith and
Henderson, 1970) first solved Eq. (6) with respect to g(r)
explicitly by transforming Eq. (6) into the Percus-Yevick equa-
tion (Percus and Yevick, 1958). This analytical solution, how-
ever, is so complicated that it is not calculated easily. On the
other hand, Perram proposed a numerical solution of the OZ
equation (Perram, 1975). Perram’s method (stepwise method)
has several advantages, namely, (i) being easy to formulate,
(ii) being able to calculate up to large r, (iii) requiring short
calculation time compared with other numerical methods.
Therefore, in this study, we obtain the radial distribution func-
tion by using Perram’s method (stepwise method).

In order to use the Perram’s method, the OZ equation (6) is
transformed into the following equation,

( h*(x*) = -1, for x* <1

| XY = =g (x¥) + 129 (7)

1
X f (x* — t)h*(|x* — t))q()dt, for x* =1,
0

\

where
[ x*=rlc
n* = mp*c3/6

q'(x*)=0, for x*=1
q' (x*)=ax*+a, for
q(x*)=0, for x*=1
9 (3)

x* <1

1
q(x*) =§a1(x*2— D+ay(x*—1), for x*<1
*
p 2L
(n*—1)?
— *
gy
2(p*—1)?
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Equation (7) is called the transformed Ornstein-Zernike equa-
tion. Eq. (7) is discretized to solve numerically by a computer.
Putting 6(x*) = x*h*(x*), 8(x*) = —x* for x* < 1 because
h*(x*) = —1 in this region. Let us choose a suitable spacing
6, then we have (N + 1) pointsin0 =t =1, 0=x* =1, .
ie., 0,6,26,...,Né6 = 1.0 at which g, = q(kd), 8, = kéh(kb),
and g, = g(k6&) (k: integer). Performing the integration in Eq.
(7) by the trapezoidal rule, namely,

0, = 121]*{0qu +29k—1Q1 5+ Ox_1q ‘;' Oc_2q2 5

P O_ni1qn-1 + Ox_nin 6} )

2
Note gy = 0. Solving Eq. (9) for 6, noting gy = 0, then

6, = —kb, for k<N

129%6 N (10)
b = ——— Gc_iq;, fi k=N.
k 1 — 6n*qed ,—E k—idj or

After calculating 6, from expression (10), the radial distribution
function, g,, is obtained by

g =0, for k< N(x*<1)

11
gk=-]f—:;+1, for k= N(x* = 1). (n

A calculated example of g(x*) is shown in Fig. 4 (where N
= 100, p*o*® = 0.8). It is found that g (x*) oscillates when x*
is small, and steeply converges to 1 with the increase in x*,
which are generally well-known characteristics of the radial
distribution function.

This is Perram’s method (stepwise method) for solving the
(transformed) Ornstein-Zernike equation.

3.3 Calculation of Solvation Pressure in Two-Phase Sys-
tem. In order to calculate the solvation pressure in long range
by using the Derjaguin approximation, we should consider a
two-phase system shown in Fig. 5 in which two large particles
(diameter o,) are immersed in many small particles (diameter
0,) and then we can calculate the interaction pressure between
the two large particles. In the following theory, suffix 1 and 2
represent large and small particles, respectively.

The Ornstein-Zernike equation in a two-phase system as
shown in Fig. 5 is written (Baxter, 1970)

2
h¥i(r) = ck(r) + > p¥ f ck(sYhE(lr — shds, (12)

k=1

where i, j are 1 or 2 and h¥; is indirect correlation function
between particles i and j. Note that k¥ = h} (i *+ j) due to
their symmetry (Baxter, 1970). The transformed Ornstein-Zer-
nike equation is (Baxter, 1970)

Fig. 5 Two-phase system. The system is composed of two kinds of
particles; two large particles (diameter o) and many small particles
(diameter o).
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Fig. 6 Coordinate system

2
rhi(r) = —qli(r) + 2m X p}

k=1

R
X f* (r = hE(Jr — thqu()de, (13)
N .

ik

where
.
Ry =219
,.J 2
g; — 0
s =2 9%
g 2
qli(r)=0, for r>R¥
gifr)=ar+b, for r=RY
q:.j(r)y=0, for r>R¥
{ 1 (14)
q.-,j(r)=§a,.(r2_R;,f]_z)+bi(r_R‘*J, for r=R¥
L6+ 30k
oA=&y
b, = 396
2(1-¢&)?

2
s .
& =g Z pj*a,;

\

h#; are calculated by Perram’s method. As shown in Fig. 6, we
set o, = (21 — 1)o, (I: integer) and divide o, into (N + 1)
calculation points, i.e., 0, 6, 26, ..., N6 = o, at which g; ;[ k]
= q; ;(kb), 6; ;[ k] = kbh; j(k6), and g; ;[ k] = g:(k6). Then Eq.
(13) gives

(9,.[k)=—kS, for O=k< (20— 1)N
01.[k] = {mp3 6012[k — (1 — 1)N1gqi[ (I = 1)N]

IN—-1

{ +2mp¥6 3 ualk ~ jlqialj) + 2mpls (15)
Jj=1
(2I-1)N—-1 ' ’
X Z Oilk — jlqualjl1}/ {1 - Wpféql.l[o]}’
j=1
N for (21— 1)N=k
(9,,0k] = —k6, for O =<k <IN
6,2[k] = {mp3 86220k — (I — 1)N]qi2[(I — 1)N]
IN-1
+2mp3 8 Y, Orolk — jlqiali] (16)

{ i=1

+ wp¥601,0k — IN1qu,[IN] + 2mp}é
IN-1

X X Oialk = jlguali1}/ {1 — mpT6g:[0]},

j=1

for IN=k
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h

Fig. 7 Center separation, r, and surface separation, h

[ 0,,[k] = —k6, for 0=k<N
022Lk) = {mp} 6615[k1424[0] + 2mp T 6
IN—1
) X Y 00k = j11gulj1f(k, j) + 2mp36 (17)
j=1
3t
X X 050k — j1g22[j1}/ {1 = 7p3 622[01},
j=1
\ fOr.. N=k
where
(k,j) =1, for j=k
f . (18)
flk,jy=-1, for j>k
From expressions (15)—(17), the radial distribution function is
gilkl1=0, for k=0
. . 19
gLkl = bi,lk] +1, for k=1 (19)

kb

Performing the central difference for expression (5) and substi-
tuting expression (19), then we get
kgT

FoPlk) = — —2—— (g lk + 1
i 27TRif}féz{g.,[ ]

— 2gi,[k] + giy[k — 1]}. (20)

Expression (20) gives solvation pressure between particles i and
Jj. We should now remember that the Derjaguin approximation
cannot be applied unless radii of interacting particles are much
larger than surface separation. Considering this limitation, the
solvation pressures regarding small particles (F57” and F5,”) are
meaningless, although we can calculate them from expression
(20). We need only F%;” because F%” is the solvation force
which acts between planes per unit area, i.e., p;, when small
particles intervene between the planes. We should note that ex-

[x107]

-

(=)

Solvation pressure (Pa)

|
-

Surface separation (nm)

Fig. 8 Solvation pressure calculated by present method. p¥ = 2 m™3,
1=150,N = 100, pf o3 = 0.8, 0> = 1 nm.
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pression (20) is with respect to the distance, r, between centers
of two particles. In order to calculate the solvation pressure as a
function of surface separation, k, as shown in Fig. 7, we should
use the following expression instead of expression (20).

2keT [ 0:4[(21 — 1)N + i + 2]
(RL=1)N+i+2)5

_20u[QI-DN+i+ 1] 6,[QI-1)N+ i]} 1)
(Q-DN+i+1)§  (RA-DN+i)s |’

for h[i]=(i+ 1)6 and

p.\‘[l] = - 7T0'162

i=1

where F{7” is renamed p,, and the effective radius of curva-
ture of surfaces, R, is given by (White, 1983; Israelachvili,
1992)

g,0;

R = %%
2(0’,‘ + (Tj)

(22)

We should note the values of p ", p;‘ o3, and N when we
calculate the solvation pressure from these expressions. First,
it is known that p; o3 is about 0.7 ~ 0.9 for almost all liquids
(van Megen and Snook, 1979; Snook and van Megen, 1979;
Heyes et al., 1980). Then the authors adopted p; = 2 m™?
because we consider two large particles. By the investigation
of convergence of the solvation pressure by changing / and
N, it was found that converged value was obtained for | =
100 and N = 75. As a result, the authors adopted pf =2
m>, 1 =150 (o, = 299 0,), N = 100 and pF o3 = 0.8. An
example of calculated solvation pressure is shown in Fig. 8
(0'2 =1 nm).

4 van der Waals Pressure

It is known that the van der Waals force acts between two
surfaces (Lifshitz, 1956) when they are separated by a very
thin liquid as shown in Fig. 9, in which surfaces are denoted
by 1 and the liquid is by 3. The van der Waals pressure, pyaw
is given by (Israelachvili, 1972, 1992; Prieve and Russel,
1988) -

A131

_ dedW _
127h?’

Vi = k] WV =
Dvaw an dW

(23)

stk+6k5j’ d —sk+s,— c
4
T = 2h£"J€_3, sn = 27rnkBT7 ej = fk(ign), ﬁ = ﬁ
c I 27
i_l_ (for &, > 0)
e (if,) = 1+ 2w} " ,
€xo0 (for &, = 0)

where h is surface separation, c is the speed of light, &, is the
Plank constant, n, is refractive index, wy is absorption frequency
and ¢, is dielectric constant.

5 Hydrodynamic Viscous Pressure
In this study, we perform the EHL calculation for circular

contacts between a sphere and a plane. The hydrodynamic vis-
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4 ® o
A = *%kBTZI x{lIn(1 - A%le™) +In(1 — A%e ™) }dx
n=0 ¥7n .

€5k — €S; ~ Sk — 8 26,h\2
Ap=F—H, Ay ==—, S%=x2+<§n>(fk—53)

cous pressure, p,, can be obtained by solving the following
Reynolds equation

= IJ3 =773 =
110Héﬂ)+i(ﬂfﬁﬁ=uuzﬁgﬂ,&ﬁ

oX 7 0X oY 7 Y R
[, x y __p __n
X==, v==2, p=tp=1,
a a Po Mo
_k _ P _ Mot
4 H - E ’ Ph et ’ ’ U - 2RE' Py ) (26)
173
_ 3R, F , ' E R = B
§ E’ 1 -2 2

where F is normal load (let us call it ‘‘fluid force’’), E is
Young’s modulus, v is Poisson’s ratio, R is radius of curvature
of the sphere, p, is density at ambient pressure, 7, is viscosity
at ambient pressure and a is the Hertzian radius of contact
circle. The authors use the following expressions for pressure-
density and pressure-viscosity relations (Dowson and Higgin-
son, 1977; Hamrock and Dowson, 1976; Roelands et al.,
1963),

( P _ 1 P PLE'

p=Ft= , p1 = 0.8, = 1.68
P P 1 + ;P E’ Pr P2
P EI z
<ﬁ=2=ﬂ%Mm+m%O+h )—%]
Tlo 72
z=—"% 5 =967, n,=19609 X 10° (Pa)
\ In To + T )

(27)

where « is the pressure-viscosity coefficient and the authors
assumed that @ = 10 GPa™'. Now we have presented all pres-
sure components in expression (1), namely, p;, p.aw and p;,.

(24)

6 Elasticity Equation
The film thickness is given by (Evans and Snidle, 1981)

S(X, Y)+w(X, Y)_ﬂ
R R R

where H is the dimensionless film thickness, H, is film thickness
at the center of Hertzian contact, S is separation due to the

\

H(X,Y) = H, + . (28)
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geometry of the spherical solid, w is elastic deformation and wy
is elastic deformation at the center of Hertzian contact. When
the total pressure, p, in expression (1) is obtained, the elastic
deformation of solid is given by (Hamrock and Dowson, 1976)

w(X Y)-Z_af“ " __P(X', Yhdx'ay'
’ T oo ) —c0 J(X — XI)Z + (Y_ YI)Z

where P is dimensionless pressure, P = p/E’.

In conventional EHL calculations, Eq. (25) and expression
(29) are solved simuitaneously. There are several methods pro-
posed in past studies to solve EHL problems (Hamrock and
Dowson, 1976; Evans and Snidle, 1981; Lin and Chu, 1991,
Venner and ten Napel, 1992(a), (b)), and the authors adopt
the ¢-solution proposed by Hamrock and Dowson (1976). For-
mulations of (25) and (29), boundary condition and initial
condition are described in detail by Hamrock and Dowson
(1976). The number of grid points per dimensionless unit length
(normalized by Hertzian contact radius, a) is 10 both in X, Y
directions (Chittenden et al., 1985), and the criteria of conver-
gence in relaxation method are same as Jang and Tichy (1995).
The calculation for not only the elastohydrodynamic regime but
also the hydrodynamic regime was performed. The authors take
a large calculation region, ie., —y =X =3, —y =Y = v,
where ¥ = 50 ~ 70. The calculation of elastic deformation
takes so much calculation time that the authors assumed that
the elastic deformed regionis —3 = X = 3, -3 = Y = 3. The
programing language which the authors used is the C language
on a UNIX machine (HP Apollo Series 735). The van der
Waals pressure and the solvation pressure for surface separation,
h, are calculated beforehand and saved in data files, and the
two pressures are calculated by linear interpolation for obtained
h at each grid point. The authors have confirmed that the numeri-
cal results considering only the hydrodynamic viscous pressure
and setting the van der Waals pressure and the solvation pres-
sure to be zero give a good agreement with past calculations
(Hamrock and Dowson, 1978). The flowchart of the program
is not described here since its detail is almost the same as in
past studies (Hamrock and Dowson, 1976; Evans and Snidle,
1981; Lin and Chu, 1991; Venner and ten Napel, 1992(a), (b);
Chittenden et al., 1985).

(29)

7 Experimental Outline

The authors developed a new apparatus which can measure
film thickness accurately between two cylinder surfaces with
curvature radius R of about 10 mumn in a crossed configuration,
which is geometrically equivalent to the configuration between
a sphere and a plane (Israelachvili, 1992). In the authors’ exper-
iments, mica was used as a solid specimen, and octamethyl-
cyclotetrasiloxane (OMCTS), cyclohexane and n-hexadecane
were used as liquid specimens. Properties of these specimens
which are required for the present calculation are listed in Table
1 and 2. The sliding speed of the two surface is 200 pm/s. The
apparatus and experimental procedure are described in detail
elsewhere (Matsuoka and Kato, 1996).

8 Other Solvation Pressure Models

8.1 Jang and Tichy’s Model. Jang and Tichy (1995)
proposed the following exp-cos model for solvation pressure

Lo
7, 4
i
7

e

N

Fig. 9 van der Waals interaction between planes
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Table 1 Properties of Mica
K(AL)(Si;A)O4(OH),*
1.60°

chemical formula
refractive index n

absorption frequency w 1.9 X 10 rad/s®

dielectric constant ¢, 7.0°
Young’s modulus E 34.5 GPa*
Poisson’s ratio v 0.205*

a: (Gains, 1957), b: (Horn and Israelachvili, 1981), c: (Israelachvili,
1992), * denotes measured value.

on the analogy of characteristics of the solvation force referring
Chan and Horn’s report (1985),

( h) (21rh)
ps=—Csexp{ ——)cos | —},
o o

where p, is the solvation pressure, C, is a constant, A is surface
separation (we call it the film thickness) and o is the molecular
diameter of intervening liquid and & = 1 nm with respect to
octamethylcyclotetrasiloxane (OMCTS) (Israelachvili, 1992).

Jang and Tichy assumed that C, = 172 MPa on the analogy
of Chan and Horn’s report in which OMCTS was used as in-
tervening liquid between solid surfaces.

8.2 Chan and Horn’s Model. Chan and Horn (1985)
performed experiments of solvation force measurements in
mica-liquid-mica system in which the solid surfaces (mica sur-
faces) were arranged in crossed cylinder configuration which is
geometrically equivalent to plane-sphere configuration (White,
1983), and they proposed the following exp-cos model for net
solvation force,

ch
F{? = —RC¢ exp(— Z‘-) cos (gﬂ—) ,
o o

where F; is the net solvation force, superscript s-p denotes
interaction between a sphere and a plane, R is the radius of
curvature of interacting solid surface and Cr is an unknown
constant. They obtained the value of Cr by applying the least-
square fitting of expression (31) to their experimental data
where OMCTS was used and Cr was obtained as 172 mN/m.
We should note that expression (31) is not a solvation pressure
but a net solvation force between a sphere and a plane.

The Derjaguin approximation (4) is used to convert a net
force between a sphere and a plane into a force between planes
per unit area, namely, pressure. It is found that R*T in expression
(4) is equal to R (radius of curvature of the cylinder surface)
in Chan and Hom'’s case. Applying the Derjaguin approximation
to expression (31),

wrr = — Cr cxp(— —’5) cos (@)
27 o o
and solvation pressure, p;, is given by

awrr 1 +an’c, exp(__ h)
To

dh 2 pa

(30)

3D

(32)

pe = FPP = —

X cos (ﬂ + cp> , tan @ = —2m. (33)
o

Coefficient of expression (33) is 174 MPa from Cr = 172 mN/
m. It is seen from expressions (30) and (33) that the difference
between two models is only in the phase factor, ¢, because
the coefficients are almost same. Expression (30) or (33) are
substituted into expression (1) and EHL problem is solved by
the same method as stated in Section 6.
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Table 2 Properties of liquids

Liquid OMCTS Cyclohexane n-hexadecane
chemical formula [(CH:),SiOl (CHy)¢* CHy(CH,),<CH,"
diameter o 1 nm* 0.6 nm* 0.4 nm’
refractive index n 1.40° 1.43¢ 1.42f
absorption frequency w 1.60 X 10 rad/s* 1.82 X 10' rad/s 1.82 X 10 rad/s’
dielectric constant ¢, 2.30¢ 2.02° 2.05°
viscosity 7, 2.35 mPa-s? 0.980 mPa-s° 3.35 mPa-s'

d: (Horn and Israelachvili, 1981), e: (Christenson, 1983), f: (Israelachvili, 1992).

It should be noted that since the solvation pressure depends
on the molecular structure of liquid, we can apply the two
models described in the Subsection 8.1 and 8.2 with the values
of coefficients (Cr or C;) only to the case where OMCTS is
used.

9 Results and Discussion

9.1 Comparison of the Present Model With Experi-
ments. Figure 10 shows an example of calculated pressure
distribution by using the present solvation pressure model for
OMCTS. It is found that the oscillatory solvation force lies on
the conventional hydrodynamic viscous pressure. If the film
thickness is smaller than this example the viscous pressure be-
comes negligible and the solvation pressure becomes dominant.
According to Hamrock-Dowson diagram (Esfahanian and Ham-
rock, 1991) the sliding condition of this example falls into
Rigid-Isoviscous region where elastic surface deformation is
negligible. The surface deformation due to the solvation pres-
sure was also small and noted EHL film shape, namely the
flattened center and the occurrence of minimum film thickness
at the trailing edge, was not obtained under this sliding condi-
tion. Figure 11 shows the relation between the fluid force, F,
and the film thickness, &, which is obtained by summarizing
raw data like Fig. 10. Black dots represent experimental results,
the thin solid line is the conventional theoretical line in R-I
regime (Venner and ten Napel, 1992(b)), the thin dashed line
and thin dot-dashed line are theoretical minimum and central
film thickness in E-I regime (Hamrock and Dowson, 1978),
respectively, and the thick solid line shows results of EHL
calculation by using the present solvation pressure model for
OMCTS. The solvation pressure is calculated assuming o, = 1
nm (see Table 2). It is seen in Fig. 11 that the film thickness
begins to deviate from the conventional EHL theory when the
film thickness is less than about 7 ~ 8 nm and changes stepwise.
"The present model gives good agreement with the experiments

[X1079)
1 T T T T

F=30( «N)

0.5

10 0
X

L
-20

-30

Fig. 10 An example of pressure distribution by the present EHL calcula-
tion, showing oscillatory pressure distribution due to the solvation pres-
sure
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on the whole though it overestimates the fluid force slightly
when the film thickness is about 1 ~ 2 nm. An advantage of
the present calculation is that laborious and difficult experiments
are not required in order to obtain unknown parameters (Chan
and Horn, 1985; Tichy, 1995(a), (b), (c); Jang and Tichy,
1995).

Figure 12 shows a comparison of experimental results with
calculation results obtained by the present method for cyclohex-
ane. The discretization of film thickness is again observed as
in the OMCTS results, and the interval is 0.5 ~ 0.6 nm, which
is roughly same as the molecular diameter of cyclohexane (see
Table 2). The solvation pressure is calculated assuming o, =
0.6 nm (see Table 2). The present calculation agrees well with
the experimental data also in the case of cyclohexane.

It is considered that the present calculation agrees well with
the experiments for the liquids which have strong solvation
force such as OMCTS and cyclohexane (Horn and Israelachvili,
1981; Christenson et al., 1982). The authors performed experi-
ments for n-hexadecane, which shows very little solvation force
(Christenson et al., 1982; Gee et al., 1990) and compared it
with the theory. They are shown in Fig. 13 in which the solva-
tion pressure is calculated assuming o, = 0.4 nm (see Table
2). The discretization of the film thickness is not observed from
the experiments in this case, and the calculation result does not
agree with the experimental results. This may be because long
chain molecules of n-hexadecane have flexibility, are entangled
in each other in the vicinity of solid surface, and therefore, n-
hexadecane shows very little solvation force (Christenson et
al., 1982; Gee et al., 1990). It may be difficult to apply the
present theory to liquids that have a molecular shape far from
spherical and exhibit weak solvation force.

It is noted that calculation time to obtain Fig. 11-13 was 10
~ 15 days, respectively.

9.2 Comparison of Solvation Pressure Models. Now
we compare the three solvation pressures. Fig. 14 shows the
solvation pressures for OMCTS. It is found that oscillation am-

10— T
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L —-—- E-l(cen) 4
. - Experiment

I \ —— present calculation

Film thickness (nm)
&

Fluid force (mN)
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g. 11 EHL calculation result for OMCTS
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Fig. 12 EHL calculation result for cyclohexane

plitudes by Jang and Tichy’s model and by Chan and Hom’s
model are remarkably larger than the present model.

Let us consider why Jang and Tichy’s and Chan and Horn’s
solvation pressure is much larger than the present calculation.
Chan and Horn obtain the coefficients, Cr, in expression (31)
from experimental results using crossed cylinder surfaces by
supposing that the surfaces are rigid bodies and elastic deforma-
tion of the solid surfaces is neglected. However, when we look
at Fig. 15 which shows a calculation result of elastic deforma-
tion of the mica surface only by the solvation pressure obtained
by the present model, it is seen that flattened deformation of
solid surface due to the solvation pressure cannot be neglected
any more. Note that the calculation conditions are H = h/R,
R=10mm, P = p/E', E' = 36.0 GPa, X = x/aand a = 4.71
X 107° m. Since this elastic deformation makes the surfaces
approach closer, the deformation produces much larger solva-
tion force in experimental, macroscopic observations. In other
words, if the elastic deformation is neglected, the solvation
pressure is overestimated. Hence, the elastic deformation should
not be neglected even when the solvation pressure is approxi-
mated by the exp-cos type model like expressions (30) and
(33). It is considered that the phase deviation among the models
is also caused by the elastic deformation. )

Finally, the results of present calculation and two other mod-
els are compared in Fig. 16 with the experimental results of the
film thickness for OMCTS. Elastic deformation is considered
in all models. It is seen that although the Jang and Tichy’s
model shows the stepwise decrease in the film thickness it pre-
dicts larger film thickness than the experimental results and the

6 . Y
— R-l
R VR E—-I(min) -
—-—- E-l(cen)
€ - Experiment
c 4r —— present calculation
. .
/5]
o L
j o
X
(&)
2
£
=
0 a S 1
107!
Fluid force (mN)
Fig. 13 EHL calculation result for n-hexadecane
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Fig. 14 Solvation pressures for OMCTS, showing three solvation pres-
sure models

agreement of the phase of the stepwise change of the film thick-
ness with the experiments is poor. The stepwise change of the
film thickness is not found in the original Jang and Tichy’s
calculation (1995). This may be because (i) the viscous pres-
sure is so large under the condition of their calculation that the
solvation pressure hardly affects the film thickness change and
(ii) there is not a sufficient number of calculations to obtain
the stepwise film thickness change in their report. When we
look at the results of Chan and Horn’s model, it is seen that
the phase agrees well with the experiments, but the predicted
film thickness is again very larger compared with the experi-
ments. It is noted, thus, that the elastic deformation of the solid
surface should be taken into account for obtaining the parameter
of exp-cos model when the film thickness is so small that the
solvation force cannot be neglected.

10 Conclusions N

The authors developed a new method for the calculation of
solvation pressure in which the transformed Ornstein-Zernike
equation for hard-spheres in a two-phase system was solved by
Perram’s method (stepwise method) and the Derjaguin approxi-
mation was used. The present theory does not include experi-
mental parameters. The authors applied the solvation pressures
to the EHL calculation and compared the calculation results
with experimental data. It was found that the present calculation
agrees well with the experimental data.

[X1077] [X1074]
10— —

- 13

- 412
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| - Pressure
0 4 0
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Fig. 15 A calculation result of elastic deformation of mica surface due
to solvation pressure of OMCTS. The solvation pressure is calculated by
the present model.
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Fig. 16 Comparison of three solvation pressure models with the experi-
ments for OMCTS

In order to ensure the possibility of surface elastic deforma-
tion, film thickness was calculated using two conventional cal-
culation models proposed so far in which the solvation force
was considered but the surface elastic deformation was not
assumed. It was found that these models overestimated the sol-
vation pressure resulting in the larger film thickness.
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