# メニスカス力を考慮したコンタクトスライダのダイナミクス解析

# - 正弦波およびランダム表面うねりによる解析結果 -

**Dynamics of an In-Contact Head Slider Considering Meniscus Force** 

| I                                                                     | E 松岡 | ⑤ 広成(鳥取大) | 正 | 福井 | 茂寿(鳥取大)    |  |  |  |
|-----------------------------------------------------------------------|------|-----------|---|----|------------|--|--|--|
| ΤĒ                                                                    | 加藤   | 孝久(機械技研)  | 非 | 諏訪 | 正浩(鳥取大学学生) |  |  |  |
| Hiroshige MATSUOKA, Tottori University, Minami 4-101, Koyama, Tottori |      |           |   |    |            |  |  |  |

Shigehisa FUKUI, Tottori University, Minami 4-101, Koyama, Tottori Takahisa KATO, Mechanical Engineering Laboratory, 1-2 Namiki, Tsukuba, Ibaraki Masahiro SUWA, Student, Tottori University, Minami 4-101, Koyama, Tottori

Computer simulation of bouncing vibration and wear characteristics of an in-contact head slider was performed using 3-degreesof-freedom (3-DOF) model of a head-suspension assembly, considering the meniscus force generated by the surface energy of the lubricant on the magnetic disk. As a result of the calculation for the sinusoidal undulation, it was found that an optimal surface energy exists from the view point of in-contact slider dynamics and wear characteristics. It was also found from the calculation for the random undulation that the effect of the surface energy of the lubricant becomes large in the case of small bouncing.

Key Words : Magnetic disk storage, Head disk interface, In-Contact Head Slider, Bouncing Vibration, Wear Characteristics, Meniscus Force, Surface Energy, Sinusoidal Undulation, Random Undulation

## 1.はじめに

ハードディスクの記録密度向上のため,現在様々な研究が行われている<sup>(1)</sup>.現在のハードディスクの磁気ヘッドスライダは, 空気膜を介して約50nm以下の浮上量が達成されているが,さらなる高記録密度化のためには浮上量の低減が必須であり,二アコンタクトあるいはコンタクト方式といった新しいヘッド・ディスクインターフェース(HDI)方式が考案されている<sup>(2)</sup>.

この新しいコンタクトHDI方式では,コンタクトヘッドスラ イダと記録媒体が接触摺動するため,従来の空気膜浮上型ヘッ ドスライダとは全く異なる解析や設計が必要となる.浮上方式 では,空気膜における発生圧力の特性解析が主体となっていた のに対し,コンタクト方式では,固-液,固-固表面間相互作 用を考慮した動的解析および設計が必要となる.

コンタクト方式における主な問題点は、ディスク表面のうね りや外乱によるスライダの跳躍、接触摺動によるディスクの摩 耗である.これに対し、著者らはヘッド・サスペンションアセ ンブリを3自由度でモデル化し、表面間相互作用の一種である メニスカス力を考慮してトライパッドスライダの跳躍挙動をシ ミュレーションにより明らかにした<sup>(3)</sup>.本研究では、この3自 由度モデルを用い、メニスカス力を考慮してトライパッドスラ イダの跳躍および接触圧力による耐摩耗性の両面から、正弦波 およびランダムディスク表面うねりに対するコンタクトスライ ダの動特性をシミュレーションにより解析した.

### 2.モデルおよび計算方法

本研究で用いたヘッド・サスペンションアセンブリのモデル を Fig. 1 に示す.跳躍方向(z), ピッチ方向(θ), ロール方向(φ) の3自由度について,それぞればねとダンパで構成されている. また,ディスクもばねとダンパで構成されているとした.ディ スクのばね定数k<sub>d</sub>については文献(4)に詳しいのでここでは省略 する.これら3方向についての運動方程式をそれぞれたて, Runge-Kutta-Gill法で数値計算を行う.なお,それぞれの運動方 程式,主な定数の値をTable1に示す.その他の各定数については,文献(3),(5)に詳しいのでここでは省略する.

また,コンタクトパッド,潤滑剤,ディスクの位置関係を4 つの場合に分類し,パッドに働くメニスカス力および,パッド とディスクの接触力を考慮してそれぞれの場合の運動方程式を たて,これらを順次切り替えてシミュレーションを行った<sup>(4)</sup>.

3.正弦波うねりに対する計算結果

正弦波うねりをもつ表面に対し,うねり周波数が大きくなる とスライダが跳躍運動を起こすことが知られている<sup>(3,6)</sup>.ここ



Fig. 1 3-degrees-of-freedom model of head-suspension assembly

Table 1 Value of parameters in the calculation mass of slider, m 0.91 mg 2.41 N/m spring constant in z direction,  $k_{s}$ damping ratio in z direction,  $\zeta_{x}$ 0.0 moment of inertia in  $\theta$  direction,  $I_{\theta}$ 1.09 × 10<sup>-13</sup> kgm<sup>2</sup> spring constant in  $\theta$  direction,  $k_{\theta}$ 1.11 × 10-4 Nm/rad damping ratio in  $\theta$  direction,  $\zeta_{\theta}$ 0.0moment of inertia in  $\varphi$  direction,  $I_{\varphi}$  $2.73 \times 10^{-14} \text{ kgm}^2$ spring constant in  $\varphi$  direction,  $k_{\varphi}$ 8.69 × 10-5 Nm/rad damping ratio in  $\varphi$  direction,  $\zeta_{\varphi}$ 0.0

[2000-8.1~4,名古屋]

で,跳躍臨界周波数 $f_{co}$ を,後端パッド1が初めてディスク面から離れるディスクうねり周波数 圧力臨界周波数 $f_{co}$ を 後端パッド1の接触圧力が初めて材質の降伏応力(本研究では40 MPa<sup>(6)</sup>)以上になるディスクうねり周波数,と定義し,これをコンタクトスライダの跳躍安定性および耐摩耗性の指標とする.

潤滑剤表面エネルギーγによる両臨界周波数 $f_{cb}, f_{cp}$ の変化を Fig. 2 に示す.表面エネルギーの増加と共に, $f_{cb}$ は増加し, $f_{cp}$ は 減少していることが分かる.これは,表面エネルギーが大きく なると,コンタクトパッドに下向きに働くメニスカス力が大き くなり跳躍は抑えられるが接触圧力は大きくなるからである.

Fig. 2に示すように,表面エネルギーに対して4つの領域に分かれるが,跳躍が起こらず,かつ,摩耗も起こらない部分をFig. 2に斜線で示している.この部分が安全領域であり,跳躍および接触圧力の両面から潤滑剤の表面エネルギー設計を行う必要があることを示している.また,この安全領域の中でも,最も高い臨界周波数を与える最適な表面エネルギーがあり,本研究で使用したモデルでは,γ=25 mJ/m<sup>2</sup>程度であることがわかる. 4.ランダムうねりに対する計算結果

次に,ランダム表面うねりに対する結果を示す.ランダムう ねりは,移動平均法<sup>の</sup>によって生成した.これは,うねりのRMS 値と無次元相関長さ<sup>()</sup>でランダムなうねりを生成できる.

無次元相関長さ $\lambda^*$ とパッド1の最大跳躍量 $Z_{l_max}$ の関係をFig. 3に示す. $Z_{l_max}$ が0以下であればパッドがディスクに追従している.ここで, $\lambda^*$ は正弦波うねり周波数fと逆の関係にあり, $\lambda^*$ が小さいほどうねりが細かくなる.従って, $\lambda^*$ が小さいと跳躍が大きくなり,大きいと跳躍が小さくディスクに追従していることがわかる.また,表面エネルギー $\gamma$ が大きくなると,メニスカスによる吸引力が大きくなるため,追従性が良くなっていることが分かる.

さらに,このような計算結果から各パラメータの影響度を調 べるため,跳躍量,接触圧力に対して回帰分析<sup>(7)</sup>を行い,回帰 係数を求めた結果をTable 2に示す.全計算結果では跳躍量が数 百 nm に達するものも含まれているが,ここでは10nm 以下のも のを抽出した.これより,最大跳躍量に対してはうねりのRMS 値が最も影響しており,次いで表面エネルギーであることが分 かる.また,最大接触圧力に対しては,表面エネルギーが大き な影響を及ぼすことが分かる.従って,コンタクトスライダの



Fig. 2 Design condition for surface energy of liquid lubricant

設計に際して潤滑剤の表面エネルギーを考慮することは非常に 重要であることが分かる.また,回帰係数の符号を見ると,荷 重と表面エネルギーでは跳躍量と圧力に対する係数の符号が 違っている.これは,Fig.2のようにそのパラメータに対して跳 躍と圧力の変化が逆になり,安全領域および最適値が存在する ことを意味している.

#### 5.まとめ

正弦波およびランダム表面うねりに対するコンタクトスラ イダのダイナミクス解析を行い,表面エネルギーの重要性と 最適値の存在を示した.

#### 謝辞

本研究は,情報ストレージ研究推進機構(SRC)の助成により 行われました.ここに感謝の意を表します.

#### 参考文献

(1) Bhatia, C. S., Polycarpou, A. A., and Menon, A. K., *Proceedings of the Symposium on Interface Tribology Towards 100 Gbit/in<sup>2</sup>*, presented at the ASME/STLE Joint International Tribology Conference & Exhibition, 1999.

(2) Hamilton, H., 撤erpendicular Contact Recording on Rigid Media, Journal of the Magnetics Society of Japan, 1994, Vol. 18, pp.171-178.

(3) Kato, T., Watanabe, S., and Matsuoka, H., 泥ynamic Characteristics of an In-Contact Headslider Considering Meniscus Force Part 1: Formulation and Application to the Disk with Sinusoidal Undulation, *ASME Journal of Tribology*, to be published.

(4) 松岡広成,福井茂寿,加藤孝久,諏訪正浩,「メニスカス力を考慮したコン タクトスライダのダイナミクス解析 - 追従性と耐摩耗性による制限要因の明 確化 -」,日本機械学会 IIP2000 講演論文集,2000, pp. 70-73.

(5) Ono, K., Takahashi, K., and Iida, K., 鼎omputer Analysis of Bouncing Vibration and Tracking Characteristics of a Point Contact Slider Model Over Random Disk Surfaces, ASME Journal of Tribology, 1999, Vol. 121, pp. 587-595.

(6)飯田浩平,小野京右,「一自由度コンタクトスライダの接触力に及ぼすスラ イダ質量,接触剛性および接触減衰の影響」,日本機械学会論文集,1998,C編, 第64巻, pp. 2894-2902.





Fig. 3 Maximum bouncing height for random undulation

Table 2 Multiple regression coefficients for  $Z_{1max}$  <10 nm

|                        | Maximum         | Maximum          |
|------------------------|-----------------|------------------|
|                        | bouncing height | contact pressure |
| RMS value              | 3.37            | 0.067            |
| Rotational speed       | 2.41            | 0.046            |
| Correlation length     | -2.03           | -0.049           |
| Contact damping ratio  | -1.20           | -0.031           |
| Mass of slider         | 1.47            | 0.035            |
| Load                   | -0.21           | 0.058            |
| Surface energy         |                 |                  |
| of lubricant           | -2.73           | 0.168            |
| Thickness of lubricant | -0.25           | 0.005            |