107 ニアコンタクト領域のMGLダイナミクス解析 (CIP法による2自由度挙動解析)

Dynamic analyses of head sliders in near-contact region using MGL equation

(2-DOF dynamic analyses using CIP method)

学	小西	範和(鳥取大・院)	非	中野	頼人(鳥取大・学)
ΤĒ	山根	清美(鳥取大・院)	正	松岡	広成(鳥取大・工)
ΤĒ	福井	茂寿(鳥取大・工)	正	鈴木	允 (科学技術ソフトウエア)

Norikazu KONISHI, Tottori University, Koyama, Tottori, 680-0945 Japan

Kiyomi YAMANE,	ibid.		
Yorihito NAKANO,	ibid.		
Hiroshige MATSUOKA,	ibid.		
Shigehisa FUKUI,	ibid.		
Makoto SUZUKI, Science	and Technology	Software, Tokyo 1	50-0001 Japan

In this paper the cubic interpolated propagation (CIP) method, which is an effective numerical scheme for differential equations including an advection term, is employed in the dynamic analyses of the ultra-thin gas film lubrication using the molecular gas-film lubrication (MGL) equation. As an example the 2-DOF slider dynamics of the flying head sliders with several tens of nanometers caused by a running projection are investigated, and the CIP method is found to be effective in the analyses of the near contact MGL dynamics.

Key Words : Molecular Gas-Film Lubrication, Flying Head Slider, Magnetic Disk Storage, Near-contact Dynamics, Cubic-Interpolated Propagation (CIP), Advection, Nonadvection

1.はじめに

磁気ディスク装置 (HDD)の大容量化、高記録密度化が進 められ、スライダとディスク面間のすきま量は10nmに達しつ つある。その際ディスク面振動や微小突起などによる外乱を 受けた場合のスライダの動的挙動の精緻な解析がますます望 まれている。その解析手法の基礎方程式には、気体分子の挙 動を統計的に記述するボルツマン方程式に基づいて導出され た分子気体潤滑 (MGL)方程式がある⁽¹⁾。このMGL 方程式に よる動特性解析には、大別して周波数領域の線形解析法⁽²⁾と 時間領域の非線形解析法⁽³⁾の2つある。前者については空気 膜の基本特性を得るためにベアリング数無限大の近似解も求 められている⁽⁴⁾。後者ではMGL方程式を時間領域で離散化し て解くが、様々な計算スキームが考案され確立されている ⁽⁵⁾⁽⁶⁾。

一方、移流拡散方程式のような双曲型偏微分方程式を、数 値的拡散を少なく解析する手法として、CIP(Cubic Interpolated Propagation)法と呼ばれる計算スキームが存在する⁽⁷⁾。本研究 では、このCIP法をMGL方程式を基礎式とした動的気体潤滑 の問題に適用し⁽⁸⁾、新たな計算スキームとしての可能性を検 討するため、空気膜特性の理論解との比較、さらには超微小 すきまヘッドの2自由度挙動解析を行ったので報告する。

2.CIP法の概要とMGL方程式への適用

数値解析では本来連続量を離散値化するが、双曲型方程式 を解析する際、不可避的に生ずるのが数値拡散である。CIP法 では解析すべき物理量の支配方程式とその勾配に対する方程 式を考え、格子間を3次関数等で補間することにより、通常 の離散化手法では消失する格子点間の情報を正確にとらえ、 これにより数値拡散を抑える手法である。

$$\sigma \frac{\partial (PH)}{\partial \tau} + \Lambda \frac{\partial (PH)}{\partial X} = \frac{\partial}{\partial X} \left(\tilde{\mathcal{Q}}_p PH^3 \frac{\partial P}{\partial X} \right)$$
(1)

$$\Lambda = \frac{6\mu U\ell}{p_a h_0^2}, \quad \sigma = \frac{12\mu\omega_0 \ell^2}{p_a h_0^2}$$

CIP 法を次の手順で適用する。 1)基礎式(1)を *F*(=*PH*)に関する式に整理し、またその勾配を とり、*G*=∂*F*/∂*X* に関する式に整理。

$$\frac{\partial F}{\partial \tau} + \frac{\Lambda}{\sigma} \frac{\partial F}{\partial X} = \frac{1}{\sigma} \frac{\partial}{\partial X} R, \quad \frac{\partial G}{\partial \tau} + \frac{\Lambda}{\sigma} \frac{\partial G}{\partial X} = \frac{1}{\sigma} \frac{\partial^2}{\partial X^2} R \quad (2)$$

ここで、R は次式である。

R

$$= \tilde{Q}_p F H \frac{\partial F}{\partial X} - \tilde{Q}_p F^2 \frac{\partial H}{\partial X}$$

2)それぞれ移流方程式および非移流方程式に分解。

移流:
$$\frac{\partial F}{\partial \tau} + \frac{\Lambda}{\sigma} \frac{\partial F}{\partial X} = 0, \quad \frac{\partial G}{\partial \tau} + \frac{\Lambda}{\sigma} \frac{\partial G}{\partial X} = 0$$
 (3)

非移流:
$$\frac{\partial F}{\partial \tau} = \frac{1}{\sigma} \frac{\partial}{\partial X} R$$
, $\frac{\partial G}{\partial \tau} = \frac{1}{\sigma} \frac{\partial^2}{\partial X^2} R$ (4)

3)移流方程式の離散化には、Fに3次多項式、Gに2次多項 式をそれぞれ導入。

$$F_i^* = a_i \xi^3 + b_i \xi^2 + G_i^n \xi + F_i^n \tag{5}$$

$$G_i^* = 3a_i\xi^2 + 2b_i\xi + G_i^n \tag{6}$$

ここで、移流の処理後の量に*を付し、 a_i, b_i, ξ は次式である。

$$a_{i} = \frac{G_{i}^{n} + G_{i-1}^{n}}{\left(\Delta X\right)^{2}} - \frac{2\left(F_{i}^{n} - F_{i-1}^{n}\right)}{\left(\Delta X\right)^{3}}, \quad b_{i} = \frac{2G_{i}^{n} + G_{i-1}^{n}}{\Delta X} + \frac{3\left(F_{i-1}^{n} - F_{i}^{n}\right)}{\left(\Delta X\right)^{2}},$$

日本機会学会 [No.1-8] IIP2001 情報・知能・精密機器部門講演会講演論文集 ['01.3.26,27,東京]

 $\xi = -\frac{\Lambda\Delta\tau}{\pi}$

4)非移流方程式の離散化に、通常の差分法を採用。 式(4)を時間微分は前進差分、空間微分は中心差分で離散化 すると次のようになる。

$$\frac{F_i^{n+1} - F_i^*}{\Delta \tau} = \frac{1}{\sigma} \frac{1}{2\Delta X} \left\{ R_{i+1}^* - R_{i-1}^* \right\}$$
(7)
$$\frac{G_i^{n+1} - G_i^*}{\Delta \tau} = \frac{1}{2\Delta X \Delta \tau} \left\{ \left(F_{i+1}^{n+1} - F_{i-1}^{n+1} \right) - \left(F_{i+1}^* - F_{i-1}^* \right) \right\}$$
(8)

実際の解析では式(5)~(8)の計算を時間刻み $\Delta \tau$ ごとに行い、 F=PHの時間発展、従って圧力Pの時間変化を得る。

3.線形解との比較による CIP 法の検証

CIP法の検証のために、微小振動を考慮した線形解と、2章 で述べたCIP法によるMGL方程式の数値解析とを比較した。 3.1 線形解

微小な勾配 β を持つスライダに対し、走行面が速度Uで走行し、かつ微小な並進振動する場合(振幅 ϵ)を考える。すきまと圧力の関係式は、それぞれ次のように仮定できる。

$$H = 1 + \beta(1 - X) + \varepsilon \cdot \cos\tau, \quad \beta \ll 1, \quad \varepsilon \ll 1$$
(9)

 $P = 1 + \beta P_{10}(X, \Lambda) + \varepsilon P_{01}(X, \tau, \Lambda, \sigma) + \cdots$ (10) ここで、 P_{10}, P_{01} は微小な勾配および振動により発生する圧力 成分である。境界条件は空気膜の両端で大気圧(P = 1)である から、

X=0, X=1において、 $P_{10}=0$ および $P_{01}=0$ である。式(9), (10)を MGL 方程式に代入し、オーダー β, ε を抽出するとそれぞれ P_{10}, P_{01} を支配する方程式が求まる。

$$O(\beta): \quad \frac{\partial^2 P_{10}}{\partial X^2} = \Lambda' \frac{\partial}{\partial X} (P_{10} + 1 - X)$$
(11)

$$O(\varepsilon): \quad \frac{\partial -\sigma_0}{\partial X^2} = \Lambda' \frac{\partial \sigma_0}{\partial X} + \sigma' \left(\frac{\partial -\sigma_0}{\partial \tau} - \sin \tau \right)$$
(12)
ご、 \Lambda ', \sigma' は修正ベアリング数と修正スクイズ数で、そ

ここで、Λ', σ' は修正ベアリング数と修正スクイズ数で、そ れぞれクエット項とポアズイユ項の比、スクイズ項とポアズ イユ項の比を意味し、次式であらわされる。

 $\Lambda' = \Lambda / \tilde{Q}_p(D_0), \quad \sigma' = \sigma / \tilde{Q}_p(D_0)$

境界条件を用い2式を解くと、それぞれ

Static:
$$P_{10} = X - \frac{e^{-\Lambda (1-\Lambda)} - e^{-\Lambda}}{1 - e^{-\Lambda'}}$$
 (13)

Dynamic:
$$P_{01} = u_{01} \cos \tau + v_{01} \sin \tau$$
 (14)
 $\Box \subset \mathcal{C}_{N}$

$$u_{01} = \operatorname{Re}[y], \quad v_{01} = -\operatorname{Im}[y]$$

$$y = \frac{e^{\alpha_2} - 1}{e^{\alpha_2} - e^{\alpha_1}} e^{\alpha_1 X} + \frac{1 - e^{\alpha_1}}{e^{\alpha_2} - e^{\alpha_1}} e^{\alpha_2 X} - 1$$

$$\alpha_1 = \left(\Lambda' + \sqrt{\Lambda'^2 + 4\sigma' i}\right) / 2, \quad \alpha_2 = \left(\Lambda' - \sqrt{\Lambda'^2 + 4\sigma' i}\right) / 2$$

である。

(特に、Λ秩◆ , σ秩ィ , σ Λ秩◆Kの場合) 圧力成分を与える方程式はそれぞれ次のようになる。

$$O(\beta): \quad 0 = \frac{\partial}{\partial X} (P_{10} + 1 - X)$$
(15)

$$O(\varepsilon): \quad 0 = \frac{\partial P_{01}}{\partial X} + K \left(\frac{\partial P_{01}}{\partial \tau} - \sin \tau \right)$$
(16)

流入端 X = 0 の境界条件を課し解を求めると、それぞれ Static: $P_{10\infty} = X$ (17)

Dynamic:
$$P_{01\infty} = u_{01\infty} \cos \tau + v_{01\infty} \sin \tau$$

となる。ここで、

$$u_{01\infty} = \cos KX - 1$$
, $v_{01\infty} = \sin KX$ (19)
である 図 2 に い および い の空間分布を示す

(18)

である。図2に、 $v_{_{01}}$ およひ $v_{_{01}}$ の空間分布を示す。

(b) projection

Fig. 2 Dynamic pressure distributions, v_{01} and v_{01}

3.2 比較検証

ここでは 3.1 節で述べた MGL 方程式の線形解 (式 (14))と、 2章で導出した CIP 法を用いた MGL 方程式の数値解析結果の 比較検討を行う。

図3に、平行スライダに対し走行面が微小振動する場合の圧 力変動の時間推移を比較した結果を示す。具体的には長さl= 1mmのスライダが、時刻t=0において、走行面との最小すき ま h_0 =20nmで固定されている。速度U=10m/sの走行面が時 間の推移と共に、周波数 f_s =10kHzで正弦波振動している。線 形解はディスク面の周期的な運動に対する定常的な圧力応答 しか求められないが、CIP法では初期分布としていたるところ 大気圧の状況から、時間の経過と共に圧力の進行波を発生さ せ、しかも発生した進行波が線形解の分布に部分的に一致し ており、最終的には線形解の分布にいたるところで一致する ことが分かる。この結果より、CIP法を用いた数値解析を行っ た場合でも空気膜の基本的な動特性を捕らえられることが確 認できた。

4. CIP法による非線形圧力応答の解析(スライダ固定)

4.1 走行面の並進振動に対する解析(ε=0.5)

図4に、走行面振動の振幅 ampが平均すきま h_0 の1/ $\chi \varepsilon = amp/h_0=0.5$)の場合の走行面振動とそれに対応する動的圧力の時間推移を示す。

4.2 突起走行(矩形突起)に対する圧力応答

数値解析では、流入端すきま h_1 =40nm、流出端すきま h_0 =20nm、すきま比 h_1/h_0 =2の傾斜平面スライダとし、走行面速度U=10m/sとした。スライダ面の走行方向の空間分割数を10³、無次元時間刻み $\Delta \tau$ (= $\omega_0 \Delta t$ 、 ω_0 は σ =1となる値)を10⁹として計算を行った。図5は矩形状の単一突起を走行させた場合の圧力変化を示す。突起の高さは流出端高さの50%、幅はスライダ長の10%とした。図5では、有次元時間t(= τ/ω_0)で2.6x10⁻⁵秒ごとの圧力分布を示した。突起の位置に対応して生ずる高圧部では、そのピーク値は突起が流出端に近づく程増大する。一方、突起通過後に低圧部が生じるが、その低圧部の極値は徐々に減少し、その分布は拡散されすそ野が広がっていく。また、低圧部の進行速度は、高圧部のほぼ半分である。図6にスライダが走行面に平行な場合について、同様の計算を行った結果を示す。この場合には、高圧部は突起

Fig. 3 Comparisons between linearzed solution and CIP results (f=10kHz)

Fig. 4 Dynamic pressures caused by vibration of the running disk (CIP)

と同一速度で移動し、そのピーク値が一定であるのに対し、 低圧部は徐々に遅れ、しかも極値が減少するとともにすそ野 が広がっていくことがわかる。なお、この現象は気体膜の動 特性の基本性質に対応しており^{(9),(4)}、本研究において CIP 法 を適用したことにより明確に確認できた。

4.3 2 自由度挙動解析

2自由度スライダに対し単一突起が走行する場合のスライ ダの挙動解析を行った。ここで、2自由度モデルは走行面垂 直方向の並進運動と重心周りの回転運動(ピッチング)を考え ている(図7参照)。並進・ピッチング運動を支配する運動方 程式は、それぞれ、

$$m\ddot{z} + kz = \int_0^b \int_0^\ell \Delta p \cdot dx dy, \qquad (20)$$

$$J\ddot{\theta} + k_{\theta}\theta = \int_{0}^{b} \int_{0}^{\ell} \Delta p \left(x_{G} - x\right) \cdot dx dy$$
(21)

となる。ここで m, Jはスライダの質量、慣性質量、 k, k_{θ} は並進、ピッチングのばね定数(支持系)で、 x_{G} はスライダの重心である。また、 $\Delta p(x, t)$ は変動圧力である。

$$\Delta p = p - p_{static} \tag{22}$$

この Δ*p*(*x*, *t*) によって運動が支配されるため、MGL 方程式の 高精度な解析が最重要項目となる。この2つの運動方程式を 無次元化したものが次式である。

$$\tilde{m}\ddot{\zeta} + \tilde{k}\zeta = \int_0^1 \int_0^1 \psi \cdot dXdY$$
(23)

$$\tilde{J}\ddot{\Theta} + \tilde{k}_{\theta}\Theta = \int_{0}^{1}\int_{0}^{1}\psi(X_{G} - X) \cdot dXdY$$
(24)

ここで、

$$\begin{split} \zeta &= z/h_0 & \text{無次元並進変位} \\ \Theta &= \theta/(h_0/\ell) & \text{無次元ピッチング変位} \\ m &= m\omega_0^2 h_0/p_a \ell b & \text{無次元質量} \\ J &= J\omega_0^2 h_0/p_a \ell^2 b & \text{無次元慣性モーメント} \\ \tilde{k} &= kh_0/p_a \ell b & \text{無次元並進剛性(支持系)} \\ \tilde{k}_{\theta} &= k_{\theta} h_0/p_a^3 b & \text{無次元ピッチング剛性(支持系)} \\ \Psi &= \Delta p/p_a & \text{無次元変動圧力} \end{split}$$

Fig. 5 Dynamic pressures caused by the running square projection (Inclied slider, CIP)

$X = x/\ell$	無次元 x 座標(スライダ長手方向)
Y = y/b	無次元 <i>y</i> 座標(スライダ幅方向)
h_0	最小すきま
p_a	周囲圧(大気圧)
$\omega_{_0}$	基準角速度

である。この運動方程式と気体潤滑の基礎式を連立して計算 を行う⁽³⁾。運動方程式にも様々な計算の方法があり、気体潤 滑の方程式にも様々な計算手法が考えられ、確立されている が⁽⁵⁾、両解析手法のカップリングについても議論が重ねられ ていて、カップリングの仕方によっては、それぞれ精度の良 い解析手法を行っても、肝心のダイナミクス解析の精度が悪 くなってしまうことが知られている⁽⁶⁾。

本研究では、気体潤滑の方程式(MGL 方程式)には CIP 法、 運動方程式に4次精度のRunge-Kutta法を用い、次のような手 順で行った。

- 1.スライダを固定して圧力が定常になるまで圧力算出を繰 り返す。
- 2. 圧力が定常になった時点を時刻 *τ*=0 とし、ダイナミクス 解析を開始する。
- スライダを固定のまま、突起を移流させ、MGL方程式の 移流の計算。
- 4. 突起固定で、非移流の計算を行い圧力算出。
- 5.突起固定のまま、運動方程式によりスライダの姿勢決定。
- 6. 突起固定のまま、スライダの姿勢変化による圧力変化を 非移流の計算で算出。
- 以下、3.~6.の手順を繰り返す。

次に実際に数値解析を行った結果について述べる。図8は スライダ-ディスク面間の最小すきま $h_0 = 20$ nm で、単一突 起(突起長さはスライダ長と等しく、突起高さは最小すきま の50%)を有するディスク面が速度 U = 10m/s で走行した場 合の解析結果である。図8の解析に用いたスライダおよび支

Fig. 7 Dynamic model of 2-DOF slider

持系の諸元は以下のとおりである。

長さl = 1mm, 幅b = 3mm 質量m = 40mg, 慣性質量 $J = 8.0 \times 10^{-11}$ N・s²・m 重心位置 $x_G = l/2$ 並進ばね定数k = 0.1N/m

ピッチングばね定数 $k_{\theta} = 0.1$ N・m

また計算には、

長さ方向 X について 401 分割

時間について ∆*t* =5.2x10⁻⁹ sec

を用いた。

図8では突起を固定し、スライダが速度Uで移動するとして図示してある。

後端部高さの時間推移(2点鎖線)に注目すると、ディスク 面との相対的な距離(すきま)があまり変化せずに突起を通 過している様子、すなわちディスク面形状にスライダ後端部 が追従している様子が見ることができる。

Fig. 8 Dynamic response of the slider for running projection (CIP)

超微小すきまにおける圧力発生の支配方程式である分子潤 滑(MGL)方程式に、双曲型偏微分方程式を高精度に解析する 手法であるCIP法を適用し、基本的な解析として10nm程度の すきまを有する固定スライダに対して走行面が並進振動する 場合、突起を通過させた場合の変動圧力を示し、さらにスラ イダの2自由度挙動解析を行い、CIP法の有用性を確認した。

参考文献

(1) Fukui, S. and Kaneko, R., *Handbook of Micro/Nanotribology*, CRC Press, 1995, Ch.13, PP.559-604

(2) Ono, K., ASME, J. Lubr. Tech., Vol.97-2, 1975, pp.250-260

(3) White, J.W. and Nigam, A., *ASME, J. Lubr. Tech.*, Vol.904, 1968, pp.777-792

(4) Fukui, S. and Kaneko, R., *JSME Int. J.*, Vol.33, No.1, 1990, pp.76-82

(5) 川端信義, ヘッド浮上解析のための数値計算テクニック, 日本機械学会講習会教材(1994) No.940-52, pp.33-37

(6) Cha, E. and Bogy, D. B., *ASME, J. Tribology*, Vol.117, 1995, pp.36-46

(7)矢部孝他, 固体・液体・気体の統一解法と CIP 法(1)~(3), 数値流体力学, 第7巻, 1999, pp.70-81, pp.103-114, pp.133-141 (8) 小西範和, 山根清美, 福井茂寿, 鈴木允, ニアコンタクト領 域の MGL ダイナミクス解析(CIP 法に基づく数値計算スキー ムの検討), 機械学会2000年度年次大会講演論文集(), No.00-1, 2000, pp.171-172

(9)小野京右,気体膜の動特性,潤滑,21巻,10号,1976,pp.643-650