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Optimization of ultrasoft pseudopotentials is discussed from two points, i.e. (1) parametriza-
tion and function forms of pseudo-wavefunctions and local part of pseudopotentials, and (2)
pseudization of augmentation charge. The cutoff energy for the Fourier components of the non-
local part of the ultrasoft pseudopotential should be carefully chosen, because calculated cohesive’
energy often changes drastically with a change of the cutoff energy for the non-local part. Pro-
posed optimization for the pseudized augmentation charge can efficiently make short wavelength
components vanish. Examples of pseudopotentials are shown for a carbon atom. Charge density

and cohesive energy are exemplified for diamond.
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§1. Introduction

The first principle electronic structure calculation
comes into a new era since invention of the first prin-
ciple pseudopotential method!-?) and the first principle
molecular dynamics.®)

In the norm-conserving pseudopotential method,V
a pseudo-wavefunction is determined under conditions
that it should be continuously connected with an all-
electron wavefunction at some reference energies and
that it should have the same value of norm as that
of the all-electron wavefunction. These conditions as-
sure the same scattering ability of pseudopotentials as
that of all-electron potential. In other words, a pseudo-
wavefunction should have the same logarithmic deriva-
tive up to the first order energy dependence as those
of all-electron wavefunctions. Nevertheless, the norm-
conserving pseudopotential method is not suitable to the
first raw or heavy elements, because the pseudopotential
becomes very deep for these elements.

Second type of the first principle pseudopotential
method is developed by Vanderbilt, called the ultra-
soft pseudopotential,® which can generally produce a
shallow pseudopotential. In this formalism, a pseudo-
wavefunction does not give the same value of the norm
in order to keep enough freedom for softness of the pseu-
dopotential. Then one should introduce an augmenta-
tion charge density to produce the same density as that
of the all-electron wavefunction. The ultrasoft pseudopo-
tential is designed for pseudo-wavefunctions so as to have
the same logarithmic derivative at the connecting radius
and the norm of pseudo-wavefunctions is defined with
an overlap operator. Concrete form of an ultrasoft pseu-
dopotential can be determined by setting a large num-
ber of parameters and function forms of the local part of
pseudopotentials and pseudo-wavefunctions.

The present authors are developing a molecular dy-
namical method in real space using ultrasoft pseudopo-
tentials with implementing the order-N algorithm.* 5)
While developing the calculation algorithm, we noticed

several important points in order to choose parameters
and function forms of ultra-soft pseudopotentials.

So far, a choice of parameters of ultrasoft pseudopoten-
tials has been guided only by a principle of widening the
energy range of applying the pseudopotential. One might
believe that the ultrasoft pseudopotential could be soft
as much as one wants. However, one should notice that,
once one requires excessive softness of local part of pseu-
dopotentials, non-local part of pseudopotentials could
not be soft any more. Therefore, a special care should
be taken of the non-local part of the ultrasoft pseudopo-
tentials, and it may be very desirable to know how the
choice of many parameter values and the function form
of local part of the ultrasoft pseudopotential should be
related to the softness of the pseudopotential itself. One
should also realize that the augmentation charge contains
significant contribution of very short wavelength compo-
nents.®) Therefore, it is crucial to pseudize the augmen-
tation charge in an efficient and systematic way so that
it does not contain short wavelength components.

In §2, we briefly review the ultrasoft pseudopotential
and present the formalism using the projection method.
Section 3 is devoted to a discussion of optimal choice of
parameters and function forms. In §4, we will emphasize
importance of a choice for the cutoff energy for the non-
local part of ultrasoft pseudopotentials. Examples of a
carbon atom and diamond are also shown and discussed.

§2. Ultrasoft Pseudopotential Scheme

The total energy of valence electrons in the Vanderbilt
ultrasoft pseudo-potential method is written (in atomic
unit) as? %)

occupied

Elotal [nu {¢1}] = Z

// drar/ "En ) —r’l) + Eye[n)
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Here, n(r) is the valence electron density, F.. is the
exchange-correlation energy functional of the density
functional theory, V;°*(r) and Vi are respectively lo-
cal and non-local ionic pseudopotentials, U[{R}] is the
ion-ion interaction energy and {R;} is a set of ion
coordinates. The factor 2 in the first term denotes
the spin degeneracy. The orthogonalization of pseudo-
wavefunctions {¢;(r)} will be mentioned later.

The total valence electron charge density n(r) is a sum
of charge density related with the occupied states ¢ and
is given by

occupied
nr)=2 Y ni(r),
ni(r) = |0 + D Qu (0)(@GilBL) (B 161) - (2.2)

nn'l

The functions BZ(r) and the augmentation charge den-
sity Qfm,(r), specified by an atomic quantum number
n or n’, are provided by the ultrasoft pseudopotential
method and centered on each ionic position R; of an
atom I.

The ultrasoft pseudopotential method also provides
the local ionic part of the pseudopotential

Vi () = > Vi (r = Ry) (2.3)
I
and the non-local part
nn’l

in a separable form.
The pseudo-wavefunction ¢;(r) satisfies an effective
Kohn-Sham equation

H|¢;) = €;S|¢i) ,

where the Hamiltonian H and the overlap operator S
are

(2.5)

==Y 4 Voot PPN
S=1+Y a8l (27)
nn'l
and
dhoe = [ @),
Vielt) = Vigr () + [ aw 2004 el
Diw =D+ [ain(Qhu) . 9)

The orthogonalization of {¢;} is defined by using the
overlap operator S as

(8:lS165) = bij-

With an atomic all-electron Hamiltonian H4g and
arbitrarily chosen reference energy e,, an atomic all-
electron wavefunction ¢, (r) is defined by

HAEwn = enYn .

(2.9)
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In the first step of constructing a pseudopotential of an
isolated atom I, an atomic pseudo-wavefunction ¢,, and
a local potential Vj,. are arbitrarily chosen in regions
r < r¢ (connecting radius for pseudo-wavefunctions de-
pending upon atomic specie and an angular quantum
number [) and r < 7l°¢ (connecting radius for the lo-
cal potential) around an atom I, respectively. The
wavefunction ¢, (r) coincides with an atomic all-electron
wavefunction 1), in the region r > r, and Vj,. with an

all-electron potential V4g in the region r > rl°¢. The
function G, (r) is determined as
Iﬁn> = Z(B~1)n’n|Xn’) ) (2'10)

n'!

where ., (r) is defined by an equation

VQ
|Xn) = {En - (__2— + Vloc)}|¢n> )
a matrix By, by

Bpp = <¢ann’) .

The function 5(r) satisfies an orthogonalization relation

(PnlBnr) = Onn- (2.11)

It should be noticed that the function y, vanishes in a
region r > Max{ry, 7%}, irrespective to a choice of &,
and ¢,. The augmentation charge @y, (r) is defined as

Qnn (r) = 9p (0)hnr (1) — G (r) e (v) - (2.12)

The coefficient D,,,,» of the non-local potential part is
related with B,,s and g,, by an equation

Dy = Brpr + En'Qnn’ - (213)

Then, in the second step, the local ionic potential Vllon

and the coeflicient Dfnz, are constructed by descreening
procedure, i.e. subtracting the Hartree and exchange-
correlation potentials contributed by valence electron
charge as in eq. (2.8).

One can also obtain an equation;

Drm = (#nlxm) + em{({@nltm) — (dn|¢m)}
= Em(Yn|¥m) — (Dn|T + Vioc|dm) }
= (Yn|T + Vag|ym)} — (énlT + Vioc|dm) -
(2.14)

Therefore, once we fix the local potential Vj,., essen-
tial point is an aspect of counterbalance between the
kinetic energy 7" and the non-local potential D,,,. In
other words, a very soft pseudo-wavefunction causes a
large non-local pseudopotential and, therefore, it is very
crucial to choose simple S-functions.

The atomic quantum number n or n’ may be denoted
by an angular momentum and a magnetic quantum num-
ber (I,m) and a reference energy e,. The number of
reference energies, for each (I,m), is arbitrary and their
values are not necessary to be eigenenergies of an iso-
lated atom. The logarithmic derivative at r = 7o is
reproducible in a wider energy range if we choose more
reference energies.

The ultrasoft pseudopotential method can be re-
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formulated as the projection method from a pseudo-
wavefunction ¢; to an all-electron wavefunction 1; by
an equation

i) = 16:) + > {lvn) = 16n)}(Balds) . (2.15)

Actually from eq. (2.15) with a help of eq. (2.11), one
can obtain

i) (] = i) (¢5]
+ 3 (Brlga) 1B 1k) (W] — lox)(nl} , (2.16)
kl

which is equivalent to eq. (2.2). This result is very im-
portant to evaluate physical properties by using pseudo-
wavefunctions. The expectation value of an opetator A
is calculated, by using eq. (2.15), as

(Wil Al;) = ($:lAlo;)
+ > (@il B (Wrl Alvn) — (Del Alg) HBil¢5) 5 (2.17)

and this assures an operator equivalence
(Wil Algs) = (¢l Alb5) (2.18)

between A in the Hilbert space of {y} and A in the
Hilbert space of pseudo-wavefunctions {¢};

A=A+ 18 (x| Aln) — (¢elAlg)) HB - (2.19)

§3. Optimal Form of Ultrasoft Pseudopotentials
The Vanderbilt ultrasoft pseudopotential depends

upon many parameters, such as matching radii r°c
for a pseudopotential, matching radii r. for pseudo-
wavefunctions, reference energies €,, a concrete form of
local part Vj!_, pseudo-wavefunctions ¢Z, and pseudiza-
tion of augmentation charge @ ,. A guiding principle
how to determine them has not been outlined.

An ultrasoft pseudopotential could not be soft as much
as one wants. An excessively demanded softness of V!
and ¢% can only be allowed at the expenses of a softness
of non-local part of pseudopotentials, i.e. spoiling slowly
varying behavior of A(r) functions.

The effects of functions 3(r) on a pseudo-wavefunction
#(r) is expressed by a matrix element (31|¢). There-
fore, if a pseudo-wavefunction does not contain short
wavelength components, short wavelength components
of functions §(r) can simply be neglected, though it may
not always be possible. In actual cases, the cutoff energy
for wavefunctions should be carefully chosen by knowing
behavior of functions B(r). Choice of the cutoff energy
will be discussed in the next section.

In this section, we analyze essential points for a choice
of several parameters in ultrasoft pseudopotentials.

3.1 Softness of local part of pseudopotential Vipe(r)
We use the local part of Troullier-Martins’ screened

soft pseudopotential V% ,(r) as our local potential.”)

First, the norm-conserving pseudo-wavefunctions are

constructed as
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RAE(r) T > rioe

pp — (3 c

R?(r) = { rtexp(pi(r)) r < rloe

pi(r) =co+ cor? + -+ c1ari? . (3.1)

Here a polynomial p;(r) should be determined so that
RPP(r) and an all-electron wavefunction Rj'Z(r) are con-
nected at 7 = rl° continuously up to the forth-order
derivatives with conditions of the norm conservation of
RPP and d?VFP (r = 0)/dr? = 0. It should be noted that
odd order coefficients Con+1 are zero. The Kohn-Sham
equation is inversely solved and the potential for the an-

gular momentum component [ can be determined as

Vspcprl(T)

| Vag(r) s> rle

B { E+Epy(r)+3{p) (r)+(®i(7))*} r<rge
(3.2)

Here pj is the derivative of p; with respect to 7. We can
use an appropriate [-component of V27 ,(r) as the local
pseudopotential V,.(r), which is soft and non singular at
r = 0. Further constraint to coefficients ¢y ~ c12 could
be imposed in order to obtain more shallow local part of

the pseudopotential.

3.2 Soft pseudo-wavefunctions ¢,

In order to have soft pseudo-wavefunctions, we start
from similar form of Troullier-Martins’ wavefunctions
with a small modification; i.e.

RPP (1) — RAE(r)
B7(r) { rexp(Fi(r))

> T,
r<Te,

(3.3)

where
Di(r) =& + Gar® + - E1or? — Ex {(r/ra)® — 1.0}* .
(3.4)

Coefficients é; ~ 1o are determined after fixing ¢y in
the same way as those in the original norm-conserving
Troullier-Marins’ formalism eq. (3.1), except using a dif-
ferent matching radii r; # rl°¢. Coefficients & and ¢ are
chosen so as to make a wavefunction soft. The parame-
ter ¢ causes neither change of derivatives at r = r nor
change of necessary r-dependence near r = 0. Despite
of these, values near r ~ 0 can be arbitrarily controlled

according to a choice of ¢.

3.3 Optimal pseudization of augmentation charge Q
The augmentation charge can be decomposed as

Qn111m12n212m2 (I‘)

= S AP, ©QH() 0 <t <y
] .

Q4 =rtpulr)

The augmentation charge Q*(r) of angular momentim
L contains short wavelength components. We may sub-
stitute Q¥ (r) by an effective augmentation charge, which
does not contain short wavelength components and just
gives the same multipole components as those of the
original augmentation charge density,®) which is called
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pseudized augmentation charge and written as Q(r).

The most desirable Q% (r) is the one as smooth as pos-
sible and has no components of short wavelengths. In
order to have satisfactory Q¥(r), Laasonen et al. pro-
posed a condition of minimization of an integral over
short wavelength region of the Fourier transformation
of QL(r).%) Here, we will propose another pseudization
procedure which can be explicitly written down.

The pseudized augmentation charge Q¥ (r) may be ex-
panded into a power series of finite order

kmax
QL) =rtpp(r) =r" Z dir?®D 10 <7 < 10 (3.6)
k=1
[ QE(r) as soft as possible  : 0 <7 < 7ip
| original Q% (r) Tin <T < T
(3.7)

Here r;, is chosen inside r, so that QL (r) is smooth

without components of short wavelength. We choose

Emax = 12, which usually can give a set of coeflicients

dy, for good agreement between a polynomial eq. (3.6)

and original Q% of eq. (3.5) in a range 7, < T < Te-
Let us express the Fourier transformed Q% (r) as

Q0= [ " arr Gt (r)jn(Gr)

0
= /m dTTZQL(T‘)jL(G?")
0

=G 2 +a3G 3+ asG +asG 0+,

(3.8)
where
Lzoz....{aznzflanOSmG, (3.9)
' 7] agng1 = G2nta sinraG ’
L:L&nq{W":@Gmnﬂ’ (3.10)
A2n+1 = Qgn41 COSTG

The coefficients @,, do not depend on G. The expan-
sion coefficients dy, in eq. (3.6) can be explicitly written
down as a function of @,,. If we have non vanishing ag,
G?Q1(G) is finite at G — co. Vanishing a,, for several
lower m are necessary in order to construct pseudized
QL(G) without short wavelength components and this is
especially crucial in the force calculation. We impose the
following conditions on the coefficients dy;

(1) /Ori" r2+LerL(7‘) _ /On‘“ 7»2+Ld7‘QL(T)
(2) prlrin) = pr(rin)
(3) pr(rin) = PL(Tin)
(4) P1(rin) = P (rin)

(5) a3 =0
(6) ds =0
(7) a4 =0

(8) Q%(ra) =0
(9) /m drr*TEQE (r) = /m drr*TEQL (r)

in Tin
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6 Tcl _ 9
(10) 5 [ arlpu(r) = pun)F = 0

in

8 Tel . 9
(1) o= [ arlgutr) - pu =0

Tel
(12) 5o [ arlpu) - pu )P =0
13 Jr;,

The first equation implies a conservation of multipole
components of augmentation charge, comparing with the
original Q¥(r). Conditions (2) ~ (4) are for continuity
of the augmentation charge. Conditions from the 5-th
to the 7-th are for softness, i.e. rapidly vanishing Q1(G)
with increasing . The conditions from the 8-th to the
12-th are for coincidence of Q% (r) with original Q*(r) in
a region of 7, < r < ry as much as possible. Actually
the condition (5) is identical to (8) and we have eleven
(= kmax — 1) independent conditions. The number of
conditions can be increased if necessary. _

In many cases of [; =2 = L = 0, we may get d1 < 0.
Actually a negative d; implies a negative Q(r = 0) for
L = 0 and causes negative augmentation charge density
at around r = 0. For [; = l; = L = 0, charge density
|#i(r)|? originating from soft pseudo-wavefunctions is too
small to compensate the negative (pseudized) augmenta-
tion charge density. Therefore, once we have negative dj,
we should set d; = 0 and increase kmax by 1 (kmax = 13).

8.4 Optimal choice of the number of reference energies

Once we increase a number of reference energies,
the energy range becomes wider where a scattering
ability of pseudopotential is identical to that of all-
electron potential and where logarithmic derivatives of
a pseudo-wavefunction is equal to that of correspond-
ing all-electron wavefunction. On the other hand, this
makes the form of a non-local part of a pseudopotential
very complicated, for example, functions S(r) show com-
plicate behavior like oscillation in a narrow range of r.
In other words, we may loose the softness of non-local
part of ultrasoft pseudopotentials.

It is important to ascertain whether the B(r) can be
reproduced in the procedure of the Fourier and the in-
verse Fourier transformations with an actual momentum
cutoff. In order to retain the softness of functions §(r),
we often ought to use single reference energy for one
(I,m). Though this choice may restrict applicable en-
ergy range of the pseudopotentials, resultant 3(r) func-
tions and pseudopotentials are always sufficient in our
experiences.

8.5 Solving the Kohn-Sham equation

The Kohn-Sham equation, for determining & and
¢(r),

vz
(o View = €)16) + 31BN (Di; — i) B516) = 0
%,J
(3.11)

is not very easy to be solved numerically. Numerical in-

stability originates from the fact, in iterative method,
that the inhomogeneous term, the second term, contains
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|¢). In order to avoid this instability, we should decom-
pose the above equation into coupled equations

{(—%j + Vioo = )|} = 0
(=% 4 Vioe — €)lg;) + > 18:)(Dij — €gi5) = 0 .

The second equation has a definite inhomogeneous term,
not in iterative way. Then the wavefunction ¢ can be a
linear combination of f and g;.

84. Choice of Cutoff Energies for Q and 8: Ex-

amples of Carbon Atom and Diamond

Here we show an example of the optimized ultrasoft
pseudopotential for a carbon atom, and charge density
and cohesive energy in diamond. Especially we will dis-
cuss effects of the cutoff energies for Q(r) and S(r).

4.1 Pseudopotential and pseudo-wavefunctions

We start constructing a pseudopotential of carbon
atom with the ground state electron configuration
1s22s22p?.  The non-local part of I = 1 of Troullier-
Martins’ norm-conserving pseudopotential is used as the
local potential V... The Vi, and descreened liOOC“ are
shown in Fig. 1. Very flat behavior of pseudopotentials
at 7 = 0 is the particular characteristics of Troullier-
Martins’ form.

We have tried two sets of choice of reference energies

and matching radii r.; and Tf"“;

(1) e2s = —0.51843 a.u., €9, = —0.20833 a.u.
re = 1.8 a.u. (s & p) (wavefunction)

rl¢ = 1.5 au. (s & p) (pseudopotential)

(2) 25,0 = —0.51843 a.u. ,
€2p,a = —0.20833 a.u. ,

€9s,p = —0.20833 a.u.
€9p,p = —0.35000 a.u.
re = 1.8 a.u. (s & p) (wavefunction)

rl¢ = 1.5 a.u. (s & p) (pseudopotential).

Corresponding (B(r) functions are demonstrated in

5 T T T T

--------- s-type TM-p-potential
-~ p-type TM-p-potential
g _____________ *--- all-electron potential
~ ----e--- descreened p-potential (local part)

0
!
52}
< .
~ X .o
> ;
T i
= E s
8 L
b3
¥ %o’a_o__ o
-10
0 0.5 1 1.5 2 2.5 3
r (au)

Fig. 1. Vo for each orbital angular momentum component and

descreened Vlicm of a carbon atom. The [ = 1 component of
Troullier and Martins’ pseudopotential is used as the local part
of ultrasoft pseudopotential.
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Fig. 2. The reference energies —0.51843 (a.u.) and
—0.20833 (a.u.) are the eigenenergies of 2s and 2p states
in an isolated carbon atom. For the choice 1 of the ref-
erence energies, both G(r) functions of { = 0 and 1 have
one node. However, for the choice 2, B(r) functions of
! = 1 have two nodes. Furthermore, two choices result
in quite different absolute values of the §(r) functions.
The behavior in the choice 2 may not be reproduced if
we use a real space mesh with an interval larger than
0.21 a.u.. In the choice 1, the real space mesh with an
interval 0.42 a.u. is enough to reproduce the behavior of
functions f3(r).

4.2 Cutoff energies and mesh intervals

Now we discuss the effects of the cutoff energy, or the
corresponding minimum mesh interval in real space. In
the standard Car-Parrinello (C-P) method, most calcu-
lation is done in k-space. The charge density is evaluated
by using wavefunctions in real space, and is transformed
into k-space. The Fourier and inverse Fourier transfor-
mation should be performed by the First Fourier Trans-
formation (FFT) and, therefore, this is called the dual
FFT scheme. Three different cutoff energies (E¥/, Es°ft
and EP¥rd) are used in the dual FFT scheme of the ul-
trasoft pseudopotential method.5)

Plane wave expansion of pseudo-wavefunctions and
Fourier transformed S(r) functions are calculated with

" | @
% a
s s-type /
—s—ptype
s
= 0 \
< A, B
=% mﬁy\'i\
- «:‘ '}.
"e ) &\\\\e’/// #
a 1 0 ..A\ "'
g
-15
0 0.5 1 1.5 2
r (a.u.)
40
o -.A‘. ',‘. ,
/ —e—[=0, i=1
—+—|=0, i=
N e Y
& , i=2
0 0.5 1 1.5
r (a.u.)
Fig. 2. Functions B(r) of carbon for angular momentums [ = 0

and [ = 1. (a) Choice 1 (one reference energy for each l); (b)
Choice 2 (two reference energies; i=1,2), which produces two-
nodes 3(r) functions of I = 1.
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the cutoff energy E¥f = (1/2)(G.)?. The term (B|¢;) is
calculated with the cutoff energy E* in the dual FFT
scheme.

The soft charge density 2 Y |¢(r)|? is calculated in the
coarse grid with an interval h = 7/(2G.), and the corre-
sponding soft cutoff energy is ES°f = (1/2)(2G,)?.

The pseudized augmentation charge Q(r) and the full
pseudo charge density n(r) are calculated in the dense
grid with interval (1/2)h, corresponding to the hard cut-
off energy EM*d = (1/2)(4G.)%.

In the real space scheme, we use the real space grid
with the interval h for both ¢;(r) and B(r) and do not
use the Fourier expansion with the cutoff energy E¥S.
Though the cutoff energy corresponding to the real space
grid interval A is not E¥f but E°®, we refer, both in the
dual FFT and the real space schemes, h = 7/(2G.) to
the real space grid interval and E¥/ = (1/2)(G,)? to the
cutoff energy.

4.2.1 Cutoff energy for Q(r)

The augmentation charge Q%(r) and pseudized one
Q%(r) with rs, = 0.7 x 7 are shown in Fig. 3, together
with their Fourier transformation Qr(G) and Qr(G).
The result of Q1%L with I; = I = L = 0 is obtained
after setting kmax = 13 and di = 0. The pseudiza-
tion of augmentation charge changes the G2-dependence
very drastically, and the pseudized augmentation charge
does not contain components of G > 10 (a.u.). In other

0.4

, (a)

0.2
ok ,/ S Q™
- pseudized Q(r)**°
-0.1 1
0 0.5 1 1.5 2
r (a.u.)
2

] ®

1.5 //
1

S L/
© hy
0
V
-0.5 —— & Q) T

— pseudized-Q(G)

0 50 100 2150 200 250 300
G" (Ry)

Fig. 3. Augmentation charge and pseudized one (with r;n = 0.7X
r¢1) of carbon for orbital angular momentum | = 0 and | =
1 of Choice 1 (one reference energy). (a) Original Q(r)L and
pseudized augmentation charge QL(r) for Iy = lp = L = 0; (b)
Fourier transformed G2Q%(G) and G2QL(G) for Iy =l = L =
0.
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words, the hard cutoff energy EP®d can be reduced to
100 Ry, owing to the present optimization of augmenta-
tion charge.

4.2.2  Cutoff energy for B(r)

In Fig. 4, we show the inverse Fourier transformed 3(r)
functions with changing the cutoff energy. The §(r) func-
tion are not directly optimized and, therefore, the identi-
cal reproduction cannot be obtained even by a very high
cutoff energy. Though it is difficult to point out what
characteristics of the inverse Fourier transformed ((r)
functions are the most crucial, the positions of the peaks
and bottoms are certainly very important. In Fig. 4, the
cutoff energy 50 Ry can reproduce correct positions of a
peak and bottom and, on the other hand, that of 30 Ry
could not. Therefore, we can say that the cutoff energy
for 8(r) should be higher than 50 Ry for a carbon atom.

In the dual FFT scheme, the 8(r) function is Fourier-
transformed with the same cutoff energy for pseudo-
wavefunctions E¥f. On the other hand, in the real space

scheme, both ¢(r) and ((r) are expressed on the real

space mesh with an interval h = 7/(2G.) and the corre-
sponding cutoff energy is E°® = 4E*f. This difference
of the cutoff energies in two different schemes, the dual
FFT and the real space schemes, can be often very seri-
ous. Actually, in the above example of a carbon atom,
we should choose that E¥f > 50Ry for the dual FFT
scheme and E5® > 50Ry for the real space scheme.

10 »
; 7o

(a)

o =
-5 {’ —— Max(Q%) =30 -
\&\// ceadenee Max(Qz) =50
10 W,/ y T Max(@%) =100 |
WX s e Max(Q?) =200
S —— Max(Q®) =300
-15
0 0.5 1 1.5 2 2.5 3
r (a.u.)
100 ° B
— Max(Q®) =30 (b)
T Max(@Q®) =50 fcq
5~ Max(@®) =100 |-\
o Max(QP) =200 f
—— Max(Q%) =300 W
-10
0 0.5 1 1.5 2 2.5 3
r (a.u.)
Fig. 4. Inverse Fourier transformation of 8(r) functions of carbon

for orbital angular momentum (a) ! = 0 and (b) I = 1 of Choice 1
(one reference energy) for several cutoff energies. The maximum
values of Q2 are given in the figure in atomic units, which are
equal to values of the cutoff energies in Rydberg unit.
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Table I. Cohesive energy of diamond par carbon atom for several
cutoff energies EY £ calculated by the dual FFT and the real
space schemes together with the conventional LDA (ref. 8).

h = 0.42a.u. h = 0.21a.u.
EYY = 15(Ry) EPY = 55(Ry)
FFT 0.56eV 8.77eV
Real Space 8.48eV 8.65eV

conventional LDA 8.63eV
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Fig. 5. Charge density of diamond of 8 atoms in a periodic cell
on (110) plane with a mesh interval A = 0.42 a.u. and a sin-
gle reference energy for each ! orbit. Contours are plotted in
every 0.04 a.u. (a) Charge density contributed only by pseudo-
wavefunctions 2 E |¢(r)|?; (b) Total charge density n(r)

4.8 Cohesive energy and charge density of diamond

We use a supercell model of 8 atoms in a unit cell
with the periodic boundary condition. The calculated
cohesive energy with cutoff energies E¥f = 55Ry (h =
0.21 a.u.) and E¥f = 15Ry (h = 0.42 a.u.) are summa-
rized in Table I, both in the dual FFT and the real space
schemes. The cohesive energies per atom can be calcu-
lated in the real space scheme as AE = 8.48 ¢V /atom for
h =0.42 a.u. and AFE = 8.65 eV/atom for h = 0.21 a.u.
These results should be compared with that of the stan-
dard LDA calculation AE = 8.63 eV /atom.®)
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In the dual FFT scheme with E¥f = 15Ry or h =
0.42 a.u. the cohesive energy is far worse than those by
other calculations. As already mentioned, in the dual
FFT scheme we should use a cutoff energy E¥/ > 50Ry
to present the $(r) and the cutoff energy E¥/ = 15Ry
(or equivalently a mesh interval 2h = 0.84 a.u.) fails to
reproduce the spatial behavior of the 8(r) functions. On
the other hand, in the real space scheme, the soft grid
mesh of the mesh interval h = 0.42 a.u. (or equivalently
E%f = 60Ry) can successfully reproduce the spatial be-
havior of the 3(r) functions. This is the reason why the
dual FFT scheme with A = 0.42 a.u. gives a poor result
of the cohesive energy, in contrast to a good result by
the real space scheme with A = 0.42 a.u.

Finally we demonstrate the charge density of diamond
in Fig. 5, calculated by using a single reference energy
and the real space scheme with the real space mesh of
h = 0.42 a.u. It can be seen that characteristic two peaks
of the charge density n(r) appear between bonding car-
bon atoms,?) and are mainly contributed by the augmen-
tation charge.

§5. Summary

We discussed the parametrization of ultrasoft pseu-
dopotentials and proposed the optimal choice of a large
number of parameter values and function forms. A
change of the G(r) functions in accordance to the number
of reference energies were demonstrated. The pseudiza-
tion of augmentation charge was presented in detail and

‘the cutoff energy for ((r) was carefully analyzed. An

ultrasoft pseudopotential of a carbon atom was exempli-
fied. Spatial behavior of the non-local part was discussed
with resultant cohesive energy, calculated by using sev-
eral different cutoff energies in diamond.
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