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Parallelism of tight-binding molecular dynamics simulations is presented by means of the order-N
electronic structure theory with the Wannier states, recently developed [J. Phys. Soc. Jpn. 69 (2000)
3773]. An application is tested for silicon nanocrystals of more than millions atoms with the transferable
tight-binding Hamiltonian. The efficiency of parallelism is perfect, 98.8%, and the method is the most
suitable to parallel computation. The elapse time for a system of 2� 106 atoms is 3.0 min by a computer
system of 64 processors of SGI Origin 3800.The calculated results are in good agreement with the results
of the exact diagonalization, with an error of 2% for the lattice constant and errors less than 10% for
elastic constants.
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1. Introduction

Accurate large-scale atomistic simulations are very
important to investigate and to predict various properties
of materials. For this purpose, the first principle electronic
structure theories have been extended to calculations of the
total energy and forces and the first principle molecular
dynamics (MD) simulation or the Car–Parrinello method1)

are now used quite widely in the condensed matter physics.
However, the systems investigated by the first principle MD
simulations are practically limited to much smaller size, at
most, of hundreds atoms and much shorter time period of
few tens pico-seconds. The other extreme is the classical
MD simulations with short-range inter-atomic potentials
which are applied to systems of millions or ten millions
atoms with time period of a few hundreds pico-seconds.2,3)

Classical MD simulations are very useful to investigate
nanoscale systems when accurate inter-atomic potentials can
be used. Even so, applicability of classical MD simulations
is limited to phenomena in which electronic process does not
play an essential role.

Modern material technology is deeply involved in
electronic processes. Then intense attention has been paid
to the order-N method for the electronic structure calcu-
lations, whose computational cost increases in linearly
proportion to the number of electrons.4,5)

Novel order-N method is being developed on the basis of
the Wannier states.6,7) The Wannier states is formally
defined with the unitary transformation of the occupied
eigen states. Once we get true Wannier states j ji, the
density matrix can be defined as

�̂� ¼
Xocc
j

j jih jj: ð1Þ

The expectation value of any physical quantity X can be
obtained with the density matrix or the Wannier states as

hX̂Xi ¼ Tr½�̂�X̂X� ¼
Xocc
j

h jjX̂Xj ji: ð2Þ

If we put the localization constraint to construct approximate
Wannier states with a loss of certain amount of accuracy,

then we can formulate the order-N method and reduce
computational cost extremely. Using this order-N method, a
system of 1:4� 106 atoms was calculated by a single CPU
standard workstation.8)

In the present paper we do parallel computation of the
perturbation procedure of the order-N method, which we call
the perturbative order-N method. We will estimate explicitly
the memory size for the parallel computation and show that
primitive parallelism achieves high performance in the
perturbative order-N method. Silicon nanocrystals are
calculated up to a system of 2,097,152 atoms, using SGI
Origin 3800 system, and the efficiency of parallelism is
analyzed. To test an accuracy and applicability for calcu-
lation of physical quantities, the lattice constant and elastic
constants are calculated using cluster systems of up to
1,423,909 atoms. The usefulness and the limit of the
perturbative order-N method will be discussed in detail.

2. Theoretical Backgrounds

2.1 The Wannier states
The Wannier states centered on the j-bond can be

expressed as

j ji ¼ Cð0Þ
j jbji þ

X
ið6¼jÞ

CðiÞ
j jaii

þ terms of farther distant bond sites, ð3Þ

where Cð0Þ
j is the mixing coefficient of the central bonding

orbital jbji and CðiÞ
j is that of the anti-bonding orbital jaii on

the neighboring i-bond.6,7) The mixing of the bonding
orbitals on the neighboring bonds are negligibly small due to
the orthogonality and the completeness, because they
contribute to other Wannier states.

For diamond structure crystals, we adopt the transferable
Hamiltonian ĤH of Kwon et al.9) The Hamiltonian includes
the tight-binding interactions and the short-range repulsive
interactions between ion cores. We truncate the hopping
interactions at a distance halfway between the first and the
second neighbor distances. If we denote sp3 hybridized
orbitals jhii, the bonding orbital jbji and the anti-bonding
orbital jaji are linear combinations of the two hybridized
orbitals ðjhii � jhi0 iÞ=

ffiffiffi
2

p
.
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In case of silicon crystals, the exact results for a system of
512 atoms are jCð0Þ

j j2 ¼ 0:938 and
P

i jC
ðiÞ
j j2 up to the second

bond-steps is 0.995. On the other hand, by the first-order
perturbation theory, the coefficients CðiÞ

j for the first bond-
step can be given by an equation

CðiÞ
j

Cð0Þ
j

¼
haijĤHjbji
"b � "a

; ð4Þ

and this gives jCð0Þ
j j2 ¼ 0:934.6,7) Note that, in the first-order

perturbation theory, CðiÞ
j does not vanish up to the second

bond-steps.

2.2 Perturbative order-N method
The total energy in the tight-binding formalism is given as

Etot ¼ Ebs þ Erep; ð5Þ

where Ebs is the band structure (BS) energy and Erep is the
repulsive energy. On the basis of the Wannier states j ji, the
BS energy and its contribution to forces on the I atom (site
RI) are written, with the tight-binding Hamiltonian ĤH, as6)

Ebs � Tr½�̂�ĤH� ¼
Xocc
j

h jjĤHj ji ð6Þ

and

Fbs
I � Tr �̂�

@ĤH

@RI

� �
¼ �

Xocc
j

h jj
@ĤH

@RI

j ji: ð7Þ

We will calculate the Wannier states by using the perturba-
tive treatment eqs. (3) and (4) and the density matrix should
be given in the same equation as eq. (1) with calculated
Wannier states j ji. The computational cost of the proce-
dure is linearly scales by the number of electrons N,6,7) and
this procedure we call the perturbative order-N method.

When we use the variational procedure to obtain the
Wannier states, the physical quantities should be calculated
in a way consistent with the calculation of the Wannier
states.6,7) Therefore, the density matrix in the above eqs. (6)
and (7) should be replaced by the optimal one ~�� ¼ 2�̂�� �̂�2,
and this procedure we call the variational order-N method.

It should be stressed that, once we can obtain Wannier
states with a certain localization constraint, we do not
introduce any other approximation in the present order-N
method.

2.3 Linearly scaling property of perturbative order-N
method

The Wannier states and the matrix elements of the
Hamiltonian are given on the basis of the atomic orbitals
j�I�i. Then we can estimate the computational cost in the
following way. Firstly the above physical quantities can be
rewritten, by using the matrix elements of the Hamiltonian
and the density matrix represented by the atomic orbitals, as

Ebs ¼
XNatom

I

XNloc

�

XN�
�

XN�
�

�I�ðIþ�Þ�

� h�I�jĤHj�ðIþ�Þ�i; ð8Þ

and

Fbs
I ¼ �

XNatom

J

XNloc

�

XN�
�

XN�
�

�J�ðJþ�Þ�

� h�J�j
@ĤH

@RI

j�ðJþ�Þ�i: ð9Þ

The numbers Natom, and N� are those of atoms and atomic
orbitals per atom, respectively. The number Nloc is that of
interacting atoms in the local region around the central atom.
The local region is defined, outside which the matrix
elements of the tight-binding Hamiltonian vanish. In the
diamond structure, Nloc ¼ 17 including the central, the first
and the second neighbor atoms.

From eqs. (8) and (9), the total computation time of the
matrix elements are scaled by a factor N� � N� � Nloc �
Natom, where the factor N� � N� is due to the cost for the
quantum mechanical calculation. In the sp3 minimal basis
set, N� is four. Therefore, we can calculate each Wannier
state by a local procedure and the total computation cost is
proportional to the number Natom. The procedure is then the
perfect order-N method.

Non-negligible amount of computation time is consumed
in the calculation of the repulsive energy and forces. The
part of the listing of the neighboring atoms is also important
and its cost is not negligible for large systems. The above
two parts are the same as in standard classical MD
simulations and the computation time of these two parts
are scaled by a factor Nloc � Natom. The computation time of
the BS energy and forces costs, at least, N� � N� times more
than those of the calculation of repulsive interactions and the
listing of the neighboring atoms.

2.4 Allotment of Wannier states to processors, memory size
and communication of data

Since the perturbative treatment is completely independ-
ent among the Wannier states, we can parallelize the
computation with respect to several groups of the Wannier
states. When we use NCPU processors, each processor
participates in the calculation of about N=NCPU states among
the total N Wannier states. For example, the calculation of
fh jjĤHj ji and h jj @ĤH@RI

j jigj¼jn�1þ1;...;jn , (jn � jn�1 ’
N=NCPU) is allotted to the n-th processor.

The matrix elements are not stored on memory because
they require totally a large CPU memory. For example, the
total memory size for the matrix elements fh�I�jĤHj�ðIþ�Þ�ig
can be estimated to be 8 ðBÞ � 42 � 17� 106 ¼ 2:2 ðGBÞ
for a system of 106 atoms. Therefore, we calculate the matrix
elements when they are required and do not store them.

In the case of 106 atoms, the memory size for all atomic
positions is 8 ðBÞ � 3� 106 ¼ 24 ðMBÞ, that for the listing
of the neighboring atoms is 4 ðBÞ � 16� 106 ¼ 64 ðMBÞ,
and that for the force is 8 ðBÞ � 3� 106 ¼ 24 ðMBÞ. Then
the total memory size for each processor is not large. In the
present calculation, all processors have the same data of all
atomic positions and no data are communicated among
processors during the calculation of the Wannier states and
contributions to the BS energy and forces.

After calculating contributions to the BS energy and
forces in individual processor, we should sum up these
elements. This procedure is accomplished by MPI-
ALLREDUCE command in the Message Passing Interface
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(MPI) in the present calculation. This is wasteful procedure
with respect to the communication of the data because a
large number of communicated data is not necessary, that is,
null. Notwithstanding, the communication time would be
relatively cheap expenses in the present work because there
exist very heavy computations with respect to quantum
mechanical freedoms.

The parallelism shown here is very primitive but keeps a
high advantage to make an accurate estimation of memory
size. It is exceptional that one can construct the algorithm of
parallel computation in quantum mechanics with high
performance shown in the next section.

3. Results and Discussions

3.1 Elapse time of one processor
We calculated four different systems of 4,096, 32,768,

262,144 and 2,097,152 atoms of Si crystals with the periodic
boundary condition. Figure 1 shows the elapse time of one
MD loop and one can see the almost perfect linearly scaling
property. The elapse times for the calculation of the BS
energy and forces are 97.44 %, 97.65%, 97.63% and 97.64%
of the total elapse times in respective systems, which are
larger than a factor 16=ð16þ 1Þ ¼ 0:941, estimated simply
in the case of N� � N� ¼ 16. Note that the small difference
between two numbers 0.976 and 0.94 is very serious for the
speed-up ratio discussed later. From these results, we can
conclude that the tight-binding calculation is heavier by a
factor 2.5 (¼ 0:976

1�0:976 �
17�16
16

) than our naive estimation. This
is very crucial difference in actual simulations, and quantum
mechanical calculations are much heavier than the classical
simulations even in the tight-binding calculation. One should
parallelize firstly the part of the calculation of the BS energy
and forces. In practice, we parallelize also the part of the
calculation of the repulsive interaction energy. The paral-
lelizable fraction P, the fraction of the elapse time of strictly
parallelizable part among the whole elapse time in the case
of one processor, reaches to 0.988. This high value of P

would be impossible without the generic property of the
linear scaling of the present method. Therefore, the
perturbative order-N method is one of the most suitable
procedures to the parallel computation.

3.2 Speed-up ratio by parallelism
When we parallelize the computational program by using

NCPU processors, the speed-up ratio �p is defined as the ratio
of the elapse time tNCPU

of NCPU processors and that t1 of one
processor as

�p �
t1

tNCPU

: ð10Þ

Let us assume that we can parallelize the part of the fraction
P perfectly. In other words, we assume that the elapse time
of this part can be reduced by a factor 1=NCPU. In such
strictly parallelized case, the total elapse time can be
minimized with the maximal speed-up ratio10)

ð�pÞmax ¼ t1 �
1

tNCPU

� �
max

�
1

ð1� PÞ þ
P

NCPU

: ð11Þ

The high speed-up ratio is possible only for the high value of
the parallelizable fraction P.

Figure 2 shows the observed speed-up ratio �p by using
MPI and the maximum one ð�pÞmax with P ¼ 0:988 as a
function of the number of processors. Compared with the
minimum elapse time t1=ð�pÞmax, the present computation
consumes 2% more for 32,768 atoms (8 processors), 18%
more for 262,144 atoms (64 processors), and 45% more for
2,097,152 atoms (64 processors), respectively. In the case of
64 processors for 2,097,152 atoms, the communication cost
is about 30% among whole elapse time. The cost of data
communication increases with the number of the processors.
The above analysis indicates that, when one uses a computer
system of more than 200 processors for 2,097,152 atoms, the
data communication process would consume the majority of
the elapse time.

For a system of 2,097,152 atoms, the elapse time of one
MD loop by one processor is 4565 s (76.1min). When the
time interval of one MD step corresponds to 3 fs in physical
systems, a one pico second simulation needs 422 h (17.6
days) of CPU time by one processor. Such simulation
becomes feasible when we use 128 processors.
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Fig. 1. The elapse time of one MD loop by using one processor for the

systems of 4,096, 32,768, 262,144 and 2,097,152 atoms of Si crystals.
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Fig. 2. The speed-up ratio �p for systems of 262,144 and 2,097,152 atoms

as a function of the number of processors. That for a system of 32,768

atoms locates slightly above that of 262,144 atoms. The dashed lines are

the maximum speed-up ratio ð�pÞmax of P ¼ 0:988 and dotted lines are

just ð�pÞmax ¼ NCPU corresponding to P ¼ 1. The observed deviation of

the line of 2,097,152 atoms at 16 processors is due to the consumption of

the elapse time in the data communication, presumably because of an ill

balancing of the data size and the number of processors.
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3.3 Calculations of elastic constants
The lattice constant and elastic constants are calculated in

systems of several sizes of clusters of Si crystal of up to
1,423,909 atoms. The boundary condition is such that
hybridized orbitals of the ideal sp3 type are fixed on the
surface atoms but surface atoms can move. Since the elastic
constants are the linear response to small distortions, they
may be expected to be reproduced by the first order
perturbation calculations.

Figure 3 shows the calculated results with increasing the
number of atoms N. The deviation can be scaled by N�1=3

because it is the effects of the surface. The values
extrapolated to N ! 1 are summarized in Table I. The
present results agree with those of the exact diagonalization
method9) within 10% error. The errors except for C44 are not
more than the difference between results by the present
tight-binding Hamiltonian (Diag.) and the LDA. The devia-
tion of the shear modulus C44 is larger than those of the bulk
modulus or C11 � C12, since C44 is inherently complicated
due to the rehybridization and the internal distortion11,12) and
this phenomena cannot be described very accurately by the
first order perturbation of the Wannier states of fixed sp3

hybrids. The discrepancy between the results with the order-
N method and those with the diagonalization method
originates from the localization constraint for constructing
the Wannier states and the perturbation treatment in eqs. (3)

and (4). These restrictions are controllable and the discrep-
ancy is not serious between the results by the present order-
N method and the diagonalization method. This is a typical
example of account balancing between the accuracy and the
computational cost in the order-N method.

Much larger error is found in the value of C0
44 of the tight-

binding calculation itself, compared with that of the LDA
calculation, which is a limitation of the present tight-binding
Hamiltonian. One of the important works in future is the
construction of more accurate tight-binding Hamiltonian
from the first principle electronic structure calculations.
Even if such sophisticated Hamiltonian is much complicat-
ed, it does not cause any serious difficulty in the calculation
by the present order-N method, though it may increase the
CPU times.

The bulk modulus originates from the energy change by a
change of bond length, which is included in the dependence
of the neighbor distances of the tight-binding parameters in
the Hamiltonian. The origin of the elastic constants C11 �
C12 and C44 is more complex. In the present subsection,
these elastic constants were evaluated quite accurately and
this fact indicates the reliability of the present perturbation
treatment. Since the Wannier states extent over the near
neighbor bond sites, a change of the electronic energy
through a change of the bond angle can be considered
reasonably. The effect of deviation of bond angles is actually
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Fig. 3. The lattice constant (a) and elastic constants (b) as a function of N�1=3, obtained by the perturbative method.

Table I. Lattice constant and elastic constants extrapolated to N ! 1 systems are compared with those by the diagonalization method (Diag.), the first-

principles calculation within the Local Density Approximation (LDA), and experiments (Exp.). The values in parentheses are errors against those with the

diagonalization method. The elastic constant C0
44 is that in a system where the internal displacement is not relaxed.

Present work Diag.9Þ LDA12Þ Exp.

Lattice constant ( �A) 5.546 (2.19%) 5.427 5.431 5.42913Þ

Bulk modulus (GPa) 82.3 (6.05%) 87.6 93.0 97.814Þ

C11 � C12 (GPa) 92.3 (1.70%) 93.9 98.0 101.214Þ

C0
44 (GPa) 188.3 (5.14%) 198.5 111.0

C44 (GPa) 97.9 (10.0%) 89.0 85.0 79.614Þ
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treated in the wave functions of the Wannier states by the
first order perturbation theory through eq. (3). Then the
second order energy change corresponding to the elastic
constants C11 � C12 and C44 can be evaluated accurately,
even though we use the unperturbed sp3 hybrid orbitals as
the basis functions. It should be noticed that one cannot
formulate the order-N method based on the sp3 hybrid
orbitals, instead of the Wannier states as in the present paper.

3.4 The density matrix and the energy of the Wannier
states by the perturbative method

The perturbative method was already analyzed in detail
elsewhere,6,7) and commented briefly in §2. In this sub-
section, we demonstrate additionally that the density matrix
and the energy of the Wannier state can be reproduced
accuracy in the perturbative method. Furthermore, we will
emphasize that the present order-N method will not
introduce any numerical error except the error introduced
by the approximation by a few terms instead of the infinite
perturbation series.

For simplicity, we consider only nearest neighbor bond
sites along a linear path with four sp3 hybrid orbitals jhIi,
jhIIi, jhIIIi, jhIVi; where two orbitals fjhIi and jhIIig and
fjhIIIi and jhIVig are on the same bond sites and fjhIIi and
jhIIIig are on the same atom. The phases of atomic orbitals
are chosen so that two Wannier states centered on the two
respective bond sites are written as

j 1i �
Cð0Þffiffiffi
2

p ðjhIi þ jhIIiÞ þ
Cð1Þffiffiffi
2

p ðjhIIIi � jhIViÞ

þ ðterms on other basisÞ; ð12Þ

j 2i �
Cð0Þffiffiffi
2

p ðjhIIIi þ jhIViÞ þ
Cð1Þffiffiffi
2

p ðjhIIi � jhIiÞ

þ ðterms on other basisÞ: ð13Þ

These forms are the one by the first order perturbation theory
and we ignore the contributions from the second nearest
bonds.

The one-body density matrix is given by

� ¼ j 1ih 1j þ j 2ih 2j þ other terms: ð14Þ

The matrix elements on the sp3 hybrid orbitals are
calculated, with jCð0Þj2 ¼ 0:934 and jCð1Þ=Cð0Þj2 ¼ 0:00904
in the perturbative method, as follows;

hhIj�jhIIi ¼
Cð0Þffiffiffi
2

p
Cð0Þffiffiffi
2

p þ
�Cð1Þffiffiffi

2
p

Cð1Þffiffiffi
2

p � 0:421 ð15Þ

hhIIj�jhIIIi ¼
Cð0Þffiffiffi
2

p
Cð1Þffiffiffi
2

p þ
Cð1Þffiffiffi
2

p
Cð0Þffiffiffi
2

p � 0:088 ð16Þ

hhIj�jhIIIi ¼
Cð0Þffiffiffi
2

p
Cð1Þffiffiffi
2

p þ
�Cð1Þffiffiffi

2
p

Cð0Þffiffiffi
2

p � 0 ð17Þ

hhIj�jhIVi ¼
Cð0Þffiffiffi
2

p
�Cð1Þffiffiffi

2
p þ

�Cð1Þffiffiffi
2

p
Cð0Þffiffiffi
2

p � �0:088: ð18Þ

These estimated values are comparable with the exact values
0:439, 0:078, �0:008 and �0:071, respectively. Though the
first order perturbation theory is quite simple, the resultant
values reproduce satisfactorily the exact ones. It is notice-
able that the matrix element hhIj�jhIIIi is quite small, though

the corresponding hopping integral is finite
(hhIjHjhIIIi ¼ �2 ¼ �0:33 eV). In case of hhIj�jhIVi, this
matrix element is not negligible, though the corresponding
hopping integral is just zero. The above facts are caused by
the interference of the two Wannier states, as in eqs. (17) and
(18).

The energy of the Wannier state is given by

"WS ¼ h 1jHj 1i

� ðjCð0Þj2 þ 6jCð1Þj2Þ"h

þ ðjCð0Þj2 � 6jCð1Þj2Þ�1 þ 6 �
�0

2
Cð0ÞCð1Þ

� "b þ 6 �
�0

2
Cð0ÞCð1Þ; ð19Þ

where "h and "b are the energies of the sp3 hybridized
orbitals and the bonding states on a one bond site,
respectively, and �0 and �1 are the intra-atomic and inter-
atomic hopping parameters (�0; �1 < 0);

"h � hhIjHjhIi ¼
"s þ 3"p

4
¼ �0:413 eV; ð20Þ

"b � hbjHjbi ¼ "h þ �1 ¼ �4:496 eV; ð21Þ

�0 � hhIIjHjhIIIi ¼ �
"p � "s

4
¼ �1:161 eV; ð22Þ

�1 � hhIjHjhIIi ¼ �4:083 eV: ð23Þ

Here "s and "p are the energies of atomic s and p states,
respectively. The factor six in eq. (19) is the number of the
first nearest neighbor bond sites. The Wannier states energy
is equal to twice of the band structure energy per bond site.
The second term in eq. (19) is the energy gain of forming the
Wannier state and evaluated as

6 �
�0

2
Cð0ÞCð1Þ ¼ �0:429 eV ð24Þ

and the resulting value is ;

"WS ¼ �4:496� 0:429 ¼ �4:925 eV: ð25Þ

More careful calculation using the Wannier states con-
structed by the perturbative method gives a value of "WS ¼
�5:136 eV and the exact value of the energy of the Wannier
state by the present tight-binding Hamiltonian is "WS ¼
�5:083 eV. Therefore, we conclude that the Wannier states
constructed by the first order perturbation theory is accurate
enough, both for the density matrix and the Wannier state
energy. It should be noticed that the energy correction eq.
(24) can be obtained also by the second order perturbation
theory for the energy of the bonding orbit jbji.

Since the energy "b is that of a simple bonding state jbji
completely localizing on one bond site, the energy difference
"WS � "b is the energy gain of Wannier states due to its
spatial extension in the system. In other words, the spatial
behavior of the Wannier states is enough to describe
energetic stability mechanism as eq. (19).

The numerical error for the Wannier state wave functions
in the perturbative method is introduced by an approxima-
tion of a few terms instead of the perturbation series
expansion in eq. (3) and this approximation is formally
equivalent to the localization constraint to the Wannier
states. The perturbative order-N method does not introduce
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any additional error. This is also the case in the variational
order-N method.

As discussed above, we do not introduce any additional
approximation or error in the order-N method of the
electronic structure calculations. In finite systems, the
dangling bonds on surfaces are terminated by the localized
sp3 hybrid orbitals jhii. Therefore, the Wannier states
centered on bond sites of one bond-step inside from the
surface miss a part of bonding and anti-bonding orbitals and
this causes a relatively small error, compared with the
energy stability of each Wannier state in eq. (24).

4. Conclusion

In a summary, we demonstrated the efficiency of
parallelism of the perturbative order-N method in the
large-scale tight-binding MD simulations. The method was
shown to be the most profitable procedure for the parallel
computation. The communication time is, even in the
present case, much less than the time of the quantum
mechanical calculations.

The perturbative order-N method may be hardly applied
to systems with large distortion of lattices or bond breaking
because the deviation from the unperturbed states becomes
very large and, in the bond breaking process, the charge
transfer and re-bonding are essentially important. In such
cases we should start from the new basis set for the
perturbation method. The other possible way is the one that
we combine the perturbative order-N method with other
methods for constructing basis states. The variational
method can be associated with the perturbative order-N
method and we can compose a hybrid order-N method. The
hybrid order-N method can give electronic structures in the
whole system and, more importantly, there is no discontin-
uous boundary in the connected region. The hybrid scheme
of the perturbative and variational order N-methods has been
already applied to the fracture propagation in Si nanocrystals
with 1:4� 106 atoms without parallelism.8) The parallelized
hybrid order-N method is a very essential method to pursue

tight-binding MD simulations for systems of millions atoms
and the perturbative order-N method is the key technique in
order to enlarge the size of the whole systems.
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