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Large-scale electronic structure calculation and its application
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Several methodologies are developed for large-scale atomistic simulations with fully quantum me-
chanical description of electron systems. The important methodological concepts are (i) generalized
Wannier state, (ii) Krylov subspace and (iii) hybrid scheme within quantum mechanics. Test cal-
culations are done with upto 106 atoms using a standard workstation. As a practical nanoscale
calculation, the dynamical fracture of nanocrystalline silicon was simulated.
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I. INTRODUCTION

Nanoscale materials are directly governed by quan-
tum mechanical freedoms of electron systems. Nowa-
days, electron systems of realistic materials are treated
by the ab initio electronic structure calculations that are
based on the density functional theory (DFT)1,2, the
first-principle molecular dynamics3, and related theories
developed for decades. A typical system size of present ab
initio calculations is, however, on the order of 102 atoms
and new practical theories are required for nanoscale cal-
culations. This article is devoted to the methods in large-
scale electronic structure calculations and their applica-
tion to nanoscale materials4–9.

In general, a quantum mechanical calculation of an
electron system is reduced to an eigen value equation;

Ĥ|φ(eig)
k 〉 = ε

(eig)
k |φ(eig)

k 〉 (1)

with an effective one-body Hamiltonian Ĥ. Here the
eigen energies and eigen states are denoted as {ε(eig)

k }
and {φ(eig)

k }, respectively. A physical quantity 〈X̂〉 is
given as

〈X̂〉 =
occ.∑

k

〈φ(eig)
k |X̂|φ(eig)

k 〉 = Tr[ρ̂X̂] (2)

with occupied eigen states {φ(eig)
k } or the one-body den-

sity matrix ρ̂

ρ̂ ≡
occ.∑

k

|φ(eig)
k 〉〈φ(eig)

k |. (3)

The calculation of eigen states, Eq. (1), is usually reduced
to a matrix diagonalization procedure and gives a severe
computational cost. Therefore, the essential methodol-
ogy for large-scale calculations is how to obtain the den-
sity matrix ρ̂ without calculating eigen states. This article
focuses the methods for structural properties including
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FIG. 1: The computational time of bulk silicon as the function
of the number of atoms (N), up to 1,423,909 atoms6; The
CPU time is measured for one time step in the molecular
dynamics (MD) simulation. A tight-binding Hamiltonian is
solved using the exact diagonalization method and an ‘order-
N ’ method with the perturbative Wannier state (See Section
II). We use a standard work station with one Pentium 4TM

processor and 2 GB of RAM.

molecular dynamics simulations. For the above purpose,
the most import physical quantity is the total energy10.

The trace in Eq. (2) is expressed as

Tr[ρ̂X̂] =
∫

dr

∫
dr′ρ(r, r′)X(r′, r) (4)

with real space coordinates r,r′. The off-diagonal com-
ponents of the density matrix, ρ(r, r′), r 6= r′, are es-
sential quantum mechanical freedoms, while the diag-
onal components, the charge density at the point r
(ρ(r, r) ≡ n(r)), appear also in classical mechanics. As
an important fact for practical large-scale calculations,
the off-diagonal long range component of the density ma-
trix dose not contribute explicitly to the value of 〈X̂〉,
if the operator X̂ is a short range one. One can find
a general principle within DFT, called ‘nearsightedness
principle’12, which is directly related to the above fact.

For practical algorithms, there are many proposals.
See reviews or comparison papers13–17. In this article,

To appear in Trans. MRS-J, Vol. 29, No.8, pp. 3599-3602 (2004).



2

we pick out two methods; (i) method with generalized
Wannier state and (ii) Krylov subspace method. Figure
1 demonstrates the computational cost with diagonaliza-
tion and our calculation6. The diagonalization results in
a compuational cost proportional to N3 with the system
size (N), as is usual in matrix diagonalization procedure
(∝ N3). Our calculation, on the other hand, shows an
‘order-N ’ property, with upto 106 atoms, in the sense
that the computational cost is proportional to the sys-
tem size (∝ N).

II. GENERALIZED WANNIER STATE

The generalized Wannier state is a generalization of
the (conventional) Wannier states18–20 (See Appendix
A). Its pioneering works were done by Walter Kohn in
the context of large-scale calculations21,22. The pictures
of the generalized Wannier states are localized ‘chemical’
wave functions in condensed matters, such as a bonding
orbital or a lone-pair orbital, with a slight spatial exten-
sion or ‘tail’.

The generalized Wannier states {φ(WS)
i } are defined as

localized wave functions that satisfy the equation

H|φ(WS)
i 〉 =

occ∑

j=1

εij |φ(WS)
j 〉 (5)

and the orthogonality

〈φ(WS)
i |φ(WS)

j 〉 = δij . (6)

The matrix εij is introduced as the Lagrange multiplier
for the constraint of Eq. (6) and is given as

εij = 〈φ(WS)
j |H|φ(WS)

i 〉. (7)

The solutions of Eq. (5) is equivalent to the unitary trans-
formation of the eigen states {φ(eig)

k }

|φ(WS)
i 〉 =

occ.∑

k

Uik|φ(eig)
k 〉, (8)

where Uik is a unitary matrix. Here the suffix i of the
Wannier state φ

(WS)
i denotes its localization center.

It is crucial that the generalized Wannier states repro-
duce the one-body density matrix ρ̂ in Eq. (3), when the
eigen states {φ(eig)

k } are replaced by the Wannier states
{φ(WS)

j }. In results, any physical quantity can be repro-
duced in the trace form of Eq. (2)23.

The concept of the generalized Wannier state is used
for practical large-scale calculations4,26,27. We derived a
mapped eigen value equation for the generalized Wannier
states

H
(i)
WS|φ(WS)

i 〉 = ε
(i)
WS|φ(WS)

i 〉 (9)

with a mapped Hamiltonian H
(i)
WS that is dependent on

the other Wannier states {φ(WS)
j }j 6=i

4,5. Equation (9) is

equivalent to Eqs. (5) and (6). A Wannier state |φ(WS)
i 〉

is not an eigen state of the original Hamiltonian H but
an eigen state of the above mapped Hamiltonian H

(i)
WS.

Equation (9) also shows that the locality of a Wannier
state can be mapped, formally, to that of a virtual im-
purity state4.

With Eq. (9), we developed a variational method so as
to generate approximate Wannier states, which is called
variational Wannier state method4. As the practical pro-
cedure, Eq. (9) is solved iteratively under explicit local-
ization constraint on each Wannier state

{φ(WS)
i } → {H(i)

WS} → {φ(WS)
i } → {H(i)

WS} → · · · (10)

With Eq. (9), we also developed a perturbative method
to generate Wannier states, which is called perturbative
Wannier state method4,5. This method corresponds to
a non-iterative solution of Eq. (9). It is noteworthy
that the perturbative Wannier state, unlike the varia-
tional one, is localized without any explicit localization
constraint, when a short range Hamiltonian H is used.

III. KRYLOV SUBSPACE METHOD

The Krylov subspace28, a mathematical concept, is fo-
cused as another important concept for large-scale cal-
culations. Its definition is the linear space that is con-
structed from the following vectors;

|i〉, H|i〉, H2|i〉, · · ·Hν−1|i〉. (11)

Here an initial vector |i〉 should be given. In the present
context, the matrix H is a Hamiltonian. The number of
bases in the Krylov subspace (ν) is chosen to be much
smaller than that of the original Hamiltonian matrix H.
In a practical method for large-scale calculations, the
Hamiltonian matrix is considered only within the above
subspace, which means the drastic reduction of the ma-
trix size. The Krylov subspace gives the mathematical
foundation of many numerical algorithms such as the
standard conjugate gradient method28 and the recursion
method29,30.

Recently, we developed a practical Krylov subspace
method for the calculation of the density matrix and ap-
plied it to molecular dynamics simulations8. The number
of bases in the subspace was chosen, typically, as ν = 30.
We compared the resultant density matrix with that by
the Wannier state method. Now we are planning various
molecular dynamics simulations, especially, to metals.

IV. HYBRID SCHEME AND PARALLEL
COMPUTATIONS

As another fundamental methodology for large-scale
calculations, we developed the hybrid scheme within
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FIG. 2: Snapshots of a fracture process in the (001) plane6. The sample contains 4501 atoms and one initial defect bond as the
fracture seed. The time interval between two successive snapshots is 0.3 ps, except that between (f) and (g) (approximately
1.3 ps). A set of connected black rod and black ball corresponds to an asymmetric dimer. See details in the original paper6.

quantum mechanics6,9. The basic idea is the followings;
The one-body density matrix is decomposed into two par-
tial matrices or ‘subsystems’ that are constructed from
several occupied wave functions. This decomposition cor-
responds to dividing the occupied Hilbert space. The
different partial density matrices are solved by different
solver methods. Each subsystem is obtained with a well-
defined mapped Hamiltonian and a well-defined electron
number9. Test calculations are done by the combinations
between (a) the diagonalization method and perturbative
Wannier state methods, (b) the variational and pertur-
bative Wannier state methods6 (c) the Krylov subspace
method and the perturbative Wannier state method9.
Since the present hybrid scheme is a technique in cal-
culating the density matrix ρ̂, any physical quantity is
quantum mechanically well defined with Eq. (2).

Parallel computation is also important for large-scale
calculations. A test calculation of the perturbative Wan-
nier state method is carried out with upto 106 atoms7 us-
ing the Message Passing Interface technique31 and with
upto 107 atoms9 using the OpenMP technique32. We are
now developing the parallelization of other methods8,9.

V. APPLICATION AND DISCUSSION

As a practical nanoscale application, the molecular dy-
namics simulation is performed for fracture of nanocrys-
talline silicon6. A standard workstation is used for the
simulations with upto 105 atoms. We use the hybrid
scheme between the variational Wannier state method
and the perturbative Wannier state method.

In the continuum theory of fracture33,34, a critical
crack length is defined by a dimensional analysis between
the competitive energy terms of the bulk strain (3D) en-
ergy and the surface formation (2D) energy. Since the

definition of the critical length is independent on the sam-
ple size or the lattice constant, we can expect a crossover
in fracture phenomena between nanoscale and macroscale
samples. The investigation of the above crossover is one
purpose of the present simulation. Another purpose is
the fracture behavior in atomistic pictures, on the points
of how and why the fracture path is formed and propa-
gates in the crystalline geometry35.

Dynamical fracture processes are simulated under ex-
ternal loads in the [001] direction. As an elementary
process in fracture, we observe a two-stage surface re-
construction process. The process contains the dras-
tic change of the Wannier states from the bulk (sp3)
bonding state to surface ones. Figure 2 shows a re-
sult, in which the fracture propagates anisotropically on
the (001) plane and reconstructed surfaces appear with
asymmetric dimers6. Step structures are formed in larger
systems so as to reduce the anisotropic surface strain en-
ergy within a flat (001) surface. Such a step formation
is understood as the beginning of a crossover between
nanoscale and macroscale samples6. Further investiga-
tion should be done for direct discussion of the crossover.

The present calculations are carried out using tight-
binding Hamiltonian within s and p orbitals. We should
say that its applicability is rather limited, due to the
simplicity of Hamiltonian. Its parameter theory, how-
ever, reproduces systematically several ab initio results
among different elements or phases, because the tight-
binding formulation is universal within the scaled length
and energy units4,5,9,35. An important future work is
to construct simple and practical (tight-binding) Hamil-
tonians more systematically from the ab initio theory.
We will use the muffin-tin orbital formulation for the
construction, because it gives directly the tight-binding
formulation36.

Recently the concept ‘multiscale mechanics’ is focused
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as the seamless theoretical connection of material simula-
tion methods among the three principles of mechanics; (I)
quantum mechanics (for electron systems), (II) classical
mechanics, and (III) continuum mechanics. The present
work gives a guiding principle and a typical example for
the concept, which is carried out by simplifying the total
energy functional.

APPENDIX A: DERIVATION OF
CONVENTIONAL WANNIER STATE

Here we derive the conventional Wannier state18,20 as a
specific case of Eq. (8). In periodic systems, eigen states
are called Bloch states {ψ(Bloch)

νk } with the suffices of the
band ν and the k-point k, the point in the Brillouin zone.
Within an isolated single band, the Wannier states can
be defined Wνl with the suffices of the band ν and the

lattice vector l;

Wνl(r) =
∫

dk e−ikrψ
(Bloch)
νk (r), (A1)

where the integration is done within the Brillouin zone37.
Equation (8) will be reduced to Eq. (A1) , when the
corresponding unitary matrix U is chosen as

Uij ⇒ Uνl,ν′k ≡ δνν′ e
−ikr. (A2)

The conventional Wannier state is given by the unitary
transform only within an isolated single band (ν = ν′),
while the generalized Wannier states are given by the uni-
tary transform within different bands (ν 6= ν′). It is also
noteworthy that the concept of the generalized Wannier
state, unlike the conventional one, can be applicable to
non-periodic cases.
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