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Chapter 1

Introduction

Nanoscale materials are directly governed by quantum mechanical freedoms of elec-
tron systems. Nowadays, electron systems of realistic materials are treated by the
ab initio electronic structure calculations that are based on the density functional
theory [1, 2], the first-principle molecular dynamics [3], and related theories devel-
oped for decades. A typical system size of present ab initio calculations is, however,
on the order of 102 atoms and new practical theories are required for nanoscale
calculations. This thesis is devoted to the theory of large-scale electronic structure
calculations and its application to realistic materials.

A keyword of the present thesis is ‘order-N’. Since a standard quantum mechani-
cal calculation is reduced to the matrix diagonalization procedure, its computational
cost is proportional to N3, where N is the system size. This fact restricts severely
the system size of quantum mechanical calculations. The term order-N method is
a general name of electronic structure methods in which the computational cost is
proportional to the system size. Figure 1.1 demonstrates our large-scale calculation
among 102 − 106 atoms. The resultant CPU time in the order-N method is almost
ideally proportional to the system size up to over one million atoms, while the ex-
act diagonalization method shows an O(N3) scaling property in the CPU time. The
present system sizes (102−106 atoms) are directly related to the present or next gen-
eration technologies. For example, the circuit design rule of the present processors,
such as Pentium 4TM, is based on the length scale of 102 nm, which corresponds to
about 200 atomic layers. The design rule in finer scales is now focused as an urgent
industrial issue [4]. Here it should be emphasized that the large-scale calculations in
the present thesis are done, not by a novel hardware environment, such as a parallel
computer, but by a novel theory of electronic structure calculations. We should
say, however, that such large-scale calculations are possible within a limited appli-
cability and/or at the sacrifice of accuracy. Therefore, the methods for a nanoscale
material simulation should be properly constructed, in system size, applicability and
accuracy, according to its purpose.

Now we discuss the nanoscale material theory from the viewpoint of simulation
methods. The present simulations of material structures can be classified into three
categories; The first category contains methods based on quantum mechanics of
electronic structures, such as the first-principle molecular dynamics. The second
category contains methods based on classical mechanics, such as classical molecular
dynamics. The last category contains methods based on continuum mechanics, such
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Figure 1.1: The computational time of bulk silicon as the function of the number of
atoms (N), up to 1,423,909 atoms [5]; The CPU time is measured for one time step
in the molecular dynamics (MD) simulation. A tight-binding Hamiltonian is solved
using the exact diagonalization method and the perturbative ‘order-N’ method (See
Section 4.3). We use a standard work station with one Pentium 4TM processor and
2 GB of RAM.

as finite element method. Conventionally, the targets of the three categories are
divided in accordance with the system size. Recently, several methodologies are
focused that bridge the above three categories. Such methodologies are often called
‘multiscale mechanics’. In this context, the present system size (102-106 atoms) is the
intermediate size between those in the quantum and classical mechanical methods.

The purpose of the present thesis, however, is not only to construct practical
simulation methods for the above intermediate system size, but also to construct a
guiding principle for bridging the three principles of mechanics. The key concept
is the total energy functional. The total energy functional is well defined among
the above three principles of mechanics in the sense that a material structure is
determined by minimizing the total energy functional.

The present thesis is mainly devoted to theories for the simplification of the ab
initio total energy functional with respect to quantum mechanical freedoms. The
following three concepts will be discussed by simplifying the total energy functional;
The first one is the tight-binding formulation of the electronic structure energy,
particularly its universality. The universality of the tight-binding Hamiltonian is
justified from the ab initio theory and gives a systematic investigation among dif-
ferent elements and phases. The second one is the order-N methods. Particularly,
we derive two practical order-N algorithms, variational one and perturbative one,
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based on the generalized Wannier states. The third one is the hybrid scheme by
dividing the occupied Hilbert space. The division is done with respect to the one-
body density matrix, which is well defined in quantum mechanics. As an important
application of the large-scale calculations, we discuss the dynamical brittle fracture
of nanocrystalline silicon.

This thesis is organized as follows; Part I is devoted to the introduction (this
chapter) and a review of the current electronic structure theory (Chapter 2). In Part
II, we construct novel theories for large-scale calculations in Chapter 3 and Chapter
4. Several exact quantum mechanical equations are derived as the foundation of
large-scale calculations. The technical details and some applications of the theories
are described in Chapter 5. Part III is devoted to the application to the fracture
dynamics of nanocrystalline silicon, particularly its possible differences from that
of macroscale samples. In Chapter 6, we explain the background of the fracture
simulations. In Chapter 7, the fracture dynamics is simulated with up to 105 atoms.
The analysis of the results shows the crucial role of the quantum mechanical freedoms
in electronic structures. In the last chapter, Chapter 8, we describe the summary
and general discussions. Several appendices are also prepared.

The atomic unit (me = h̄ = |e| = 1) is used throughout the present thesis, except
where indicated. As a typical transferable tight-binding Hamiltonian for silicon, we
use one in Ref. [6], except where indicated.



Chapter 2

Current electronic structure
theory
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2.1 Density functional theory

Here we gives a brief introduction to the ab initio electronic structure theory. Es-
pecially we focus on the density functional theory (DFT) within the local density
approximation (LDA) as the standard method for condensed matters. The density
functional theory is based on several fundamental theories, such as the Hohenberg-
Kohn theorem [1], the Kohn-Sham equation [2], and the Janak theorem [7]. See
reviews, such as Ref. [8]. Here we explain only the resultant formulations that are
used in the present standard calculations.

Formulation

Suppose an electronic system in an external potential Vext(r). The electronic system
described by a single Slater determinant of occupied one-electron wave functions
{φi}i. In a realistic system of many atoms, the external potential Vext corresponds
to the sum of the Coulomb potentials from the nucleus of the atoms. Hereafter we
limit the discussion to the para-magnetic cases. The charge density is defined by

n(r) =
occ.∑

i

|φi(r)|2, (2.1)

and the total energy is given by

Etot ≡ Ekin + Eext + EH + EXC, (2.2)

Ekin =
∑

i

∫
drφ∗

i (r)
−∇2

2
φi(r), (2.3)

Eext =
∫
Vext(r)n(r)dr, (2.4)

EH =
1

2

∫ ∫
n(r)n(r′)drdr′

|r − r′| . (2.5)

Here Ekin, Eext, EH, EXC are the kinetic energy, the external potential energy, the
Hartree energy and the Exchange-correlation energy, respectively. The exchange-
correlation energy EXC = EXC[n] is a given functional of the charge density n(r).
The present standard functional is that within the local density approximation
(LDA)

EXC = E
(LDA)
XC ≡

∫
n(r)ε

(LDA)
XC (n(r))dr. (2.6)

Here ε
(LDA)
XC (n(r)) is a function, not functional, of the local charge density. The

explicit form of the function ε
(LDA)
XC (n) is determined so as to reproduce the exact

ground-state energy of the homogeneous electron gas.
As in standard variational procedures, the equation for one wave function is

given by

δ

δφ∗
i

⎧⎨
⎩Etot −

occ.∑
j,k

εkj〈φk|φj〉
⎫⎬
⎭ = 0, (2.7)
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where the matrix εkj is the Lagrange multiplier with respect to the orthogonality
constraints between the wave functions

〈φi|φj〉 = δij . (2.8)

The equation(2.7) is rewritten as

HKS|φi〉 −
occ.∑
j

εij|φj〉 = 0 (2.9)

with the effective Hamiltonian of

HKS ≡ −∇2

2
+ Veff(r), (2.10)

where

Veff(r) ≡ δEext

δn(r)
+

δEH

δn(r)
+
δEXC

δn(r)

= Vext(r) +
∫
n(r′)dr′

|r − r′| +
δEXC

δn(r)
. (2.11)

This Hamiltonian HKS is called the Kohn-Sham Hamiltonian. The solution of
Eqs. (2.8) and (2.9) gives the ground state within the single Slater determinants.
Using Eqs.(2.8) and (2.9), one can find that the matrix εij is Hermitian in the ground
state (ε∗ij = εij) and is given as

εij = 〈φj|HKS|φi〉. (2.12)

Any physical quantity 〈X̂〉

〈X̂〉 ≡
occ∑
k

〈φk|X̂|φk〉 (2.13)

is invariant under the unitary transforms with respect to the occupied wave functions

|φi〉 → |φ′
i〉 ≡

occ.∑
j

Uij |φj〉, (2.14)

where Uij is a unitary matrix. This freedom is called the ‘unitary freedom’ in
the sense that the wave function has a freedom that does not affect any physical
quantity. If one fixes the above unitary freedom so that the matrix εij becomes

diagonal (εij = δijε
(eig)
i ), Eq.(2.9) is reduced to an eigen value problem:

HKS|φ(eig)
i 〉 = ε

(eig)
i |φ(eig)

i 〉. (2.15)

This equation is the Kohn-Sham equation and is solved in practical electronic-
structure calculations.
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Discussions

Now the one-body density matrix ρ̂ is introduced as

ρ̂ ≡
occ.∑

i

|φi〉〈φi| (2.16)

or

ρ(r, r′) ≡
occ∑
i

φ∗
i (r

′)φi(r). (2.17)

The commutation relation

0 = ĤKSρ̂− ρ̂ĤKS (2.18)

is satisfied. The density matrix ρ̂ is unique and invariant under the unitary trans-
forms of Eq. (2.14). Any physical quantity 〈X̂〉 is described, with the density matrix
ρ, in the trace form of

〈X̂〉 ≡
occ.∑

i

〈φi|X̂|φi〉 = Tr[ρ̂X̂] =
∫
dr

∫
dr′ρ(r, r′)X(r′, r). (2.19)

Note that the DFT can be generalized by the fractional occupation formalism
[9, 10, 11], in which the charge density is redefined as

n(r) =
∑

i

fi|φi(r)|2. (2.20)

In the fractional occupation formalism, the one body matrix should be redefined as

ρ̂ ≡
∑

i

fi|φi〉〈φi|, (2.21)

in which the unitary freedom exists only among the electronic states {φi} whose
occupations {fi} are the same value.

In this section, we have explained the foundations of the DFT. A couple of
related topics will be discussed in Appendix A.1, that is, the first-principle molecular
dynamics and the limitation of the LDA.
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2.2 Construction of tight-binding Hamiltonians

Here we explain that the tight-binding Hamiltonian can be constructed from the
ab initio theory. The construction is done systematically in the linear muffin tin
orbital (LMTO) theory [12, 13]. In this section, we will discuss the theory within
the atomic sphere approximation. The ‘muffin tin’ means spherical regions whose
centers are located at atom sites. Radius for each atomic sphere is properly given
so that the total volume of the spheres is equal to the volume of the system.

Electronic structure theory as scattering problem

Let the Kohn-Sham potential be transformed into its spherical average within each
muffin tin region;

Veff(r) ⇒ Veff(|r|) at r < R, (2.22)

where R is the radius of the corresponding spherical region. Within an atomic sphere
(r < R), we can write the Kohn-Sham equation as(

−∇2

2
+ Veff(r) − ε

)
|φlm〉 = 0 (2.23)

with the suffices of the angular momentum (l,m). The above situation is similar to
that in an isolated atom. A crucial difference between isolated atoms and condensed
matters is the difference in the boundary condition. In isolated atoms, the vanishing
boundary condition

|φlm(ε)〉 = 0 (r → ∞) (2.24)

is imposed, which results in the quantization of the energy (ε = εi). In condensed
matters, on the other hand, a continuum energy band is possible, due to the lack of
the vanishing boundary condition. Electronic structures in condensed matters are
based on the potential scattering problem. If the effective potential is supposed to
be constant outside the sphere

Veff(r) = V0 at r > R, (2.25)

the problem is reduced to a potential scattering problem. The free electron system
is a simple example, in which the Kohn-Sham equation is reduced to the Helmholtz
equation

(∆ + k2)|φ〉 = 0, (2.26)

where k ≡
√

2ε and ε > 0. The general solution of Eq. (2.26) is written as a linear
combination of spherical waves

φ(r) =
∑
lm

{Almjl(kr) +Blmnl(kr)}Ylm(r̂), (2.27)

with the arbitrary constants Alm andBlm. The function jl(x) or nl(x) is the spherical
Bessel or Neumann functions, respectively. A plane wave eik·r is also a solution of
Eq. (2.26) and is written by the spherical waves in

eik·r = eikr cos θ =
∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ), (2.28)

where the z axis is chosen in the direction of k.
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Energy linearization and LMTO theory

Now we are back to Eq. (2.23). One of the most important concepts for the current
electronic structure theory is the concept called ‘energy linearization’. The lineariza-
tion concept is the foundation of, not only the LMTO theory [12, 13], but also the
ab initio pseudo potential theory [14, 15, 16, 17]. For a given ‘reference’ energy εref ,
the wave function |φlm(ε)〉 can be approximated within the linear expansion near
the reference energy(ε ≈ εref);

|φlm(ε)〉 ≈ |φlm(εref)〉 + (ε− εref)|φ̇lm(εref)〉 (2.29)

where |φ̇lm(ε)〉 is the energy derivative of the wave function

|φ̇lm(ε)〉 ≡ d|φlm(ε)〉
dε

. (2.30)

The reference energy ε is chosen independently for each angular momentum. The
reference energy should be, basically, chosen at the center of an energy band in
condensed matters. The wave function φ is normalized in the spherical region

〈φlm|φlm〉R = 1 (2.31)

where

〈· · ·〉R ≡
∫

r<R
· · ·dr. (2.32)

Differentiating Eq. (2.31) with respect to the energy, we obtain the orthogonal rela-
tion between φ and φ̇

〈φlm|φ̇lm〉R = 0 (2.33)

within the sphere. In the LMTO method, the functions

|χIlm〉 ≡ |φIlm〉 +
∑

Jl′m′
hIlm,Jl′m′ |φ̇Jl′m′〉 (2.34)

are constructed, as the basis set for the Hamiltonian matrix. Here I or J denotes
an atom site. For a physical basis set, the functions {|χIlm〉} should be smooth over
the whole system, while the functions {|φIlm〉, |φ̇Jl′m′〉} are defined independently
at each atomic site. The above requirement of the global smoothness on {|χIlm〉}
determines the coefficients hIlm,Jl′m′ uniquely. This is the fundamental concept of
the LMTO method. In practical calculations, {|χIlm〉} is usually replaced by

|χ̃Ilm〉 ≡ |φIlm〉 +
∑

Jl′m′
hIlm,Jl′m′

{
|φ̇Jl′m′〉 + õJl′m′|φJ ′l′m′〉

}
. (2.35)

The parameters {õJl′m′} are properly chosen so as to construct the ‘most localized’
Hamiltonian. This formulation with Eq. (2.35) is usually called tight-binding LMTO
method.

The tight-binding LMTO method is now widely used in condensed matter physics.
One typical application is those in non-periodic systems, such as amorphous [18],
because these systems can not be treated with a small simulation cell. Another
typical application is the theoretical connection with the novel methods for strongly
correlated systems. A recent example is the connection of the LDA method with
the dynamical mean field theory (DMFT), known as ‘LDA+DMFT’ [19, 20].
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Locality and universality of tight-binding Hamiltonian

Hereafter, in this section, we will see that the LMTO theory gives the universality
of the tight-binding Hamiltonians. After a complicated procedure, we can obtain
one simple resultant tight-binding Hamiltonian on an orthogonal basis set {|Ilm〉}.
Its explicit form is given by

H(TB) = C + ∆1/2S̃∆1/2 (2.36)

S̃ ≡ S(1 −Q1/2SQ1/2)−1. (2.37)

Here the matrices C, ∆ and Q are diagonal, for example,

CIlm,Jl′m′ ≡ CIlmδIJδll′δmm′ , (2.38)

while the matrices S and S̃ has off-diagonal elements. The matrices S and S̃ are
called ‘bare’ and ‘screened’ structure constants, respectively. The ‘bare’ structure
constant S is defined by

SIlm,J ′l′m′ ∝
(

1

RIJ

)l+l′+1

Y ∗
l+l′,m′−m(R̂IJ), (2.39)

where RIJ ≡ RI − RJ is the interatomic vector between the I-th and J-th atoms.
Here, in Eq. (2.39), we drop some non-essential factors. Though we have skipped
all the technical details, we can see that the interatomic interaction in the tight-
binding Hamiltonian H(TB) is determined by the screened structure constant S̃. If
the tight-binding Hamiltonian shows a short-range behavior, it should be reduced
to the short-range behavior of S̃. In general, an inversed matrix A−1 is not sparse,
even if the matrix A itself is sparse. Since, in Eq. (2.41), S̃ is obtained by the
inversed matrix (1−Q1/2SQ1/2)−1, the short-range property of S̃ is not trivial. The
meaning of the screened structure constant can be described below; When we rewrite
Eq. (2.37) as

S̃ = S + SQS̃, (2.40)

Eq. (2.40) is a Dyson-like equation for S̃, or a self-consistent scattering problem. If
orbital suffices are ignored, the explicit matrix formula is given by

S̃IJ = SIJ +
∑
K

SIKQKKS̃KJ (2.41)

with the atom suffices I, J,K. The second term of Eq.(2.41) is a scattering path of
J → K → I. Here K denotes all the atoms in the system. The short-range property
of S̃ is achieved by the screening effect, due to the multiple scattering.

Now the most important consequence from the LMTO theory is that the value
of the screened structure constants are universal in the sense that they are defined
for atomic structures, not for specific elements. This can be interpreted as the
statement that the screening effect of the multiple scattering, described in Eq. (2.40),
is essentially governed by the geometry of atomic structures, not by the character
of each element. This universality is the origin of the ‘rigid band’ picture, or the
tendency that the elements among the same group form similar atomic structures
and electronic structures.
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The short-range property of the screened structure constant S̃ is demonstrated
in Fig. 2.1, which shows the case in the ssσ form (S̃ssσ). The data are plotted as
the function of the scaled interatomic distance d in units of the Wigner-Seitz radius
w, among simple cubic (SC), body-centered cubic (BCC) and face-centered cubic
(FCC) structures. The Wigner-Seitz radius w is defined to be the radius of the
sphere whose volume equals to that per atom (v0);

4π

3
w3 = v0. (2.42)

The solid line is an interpolation line. We can see that the screened structure con-
stants are well localized and are well interpolated by a ‘universal’ curve. This means
that the screening effect of the multiple scattering is well scaled by the Wigner-Seitz
radius. In other words, the scattering wave ‘shrinks’, due to the screening effect,
into a localized region that is scaled by the Wigner-Seitz radius. The shrinkage of
the wave function by the multiple scattering is analogous to that by a potential wall.
The universal short-range behavior of the screened structure constant directly gives
the short-range tight-binding Hamiltonian, in Eq. (2.36). In short, the interatomic
hoppings can be described by the universal curve in a scaled length and energy.

The shrinkage of a scattering wave is directly seen, for example, in Fig.6 of
Ref. [13]; a spherical scattering wave centered on an atom shrinks within a BCC
structure. The screening or shrinking behavior is formally analogous to the screening
of the electrostatic field, in which a monopole field at an atom is screened due
to the induced dipole field at neighbor atoms. Of course, the two situations are
different, at least, in the sense that the scattering wave is described by the Helmholtz
equation, Eq. (2.26), while the electrostatic field is described by the Laplace equation
(∆φ = 0).

Figure 2.1: Screened structure constant in the ssσ symmetry (S̃ssσ) as the function
of the interatomic distance d scaled by the Wigner-Seitz radius w. The data are
plotted for the first and second nearest neighbor sites among simple cubic (SC),
body-centered cubic (BCC) and face-centered cubic (FCC) structures. The solid
line is an interpolation line. The graph is plotted based on the data in Ref.[13].

In conclusions, the environmental effect of condensed matters is reduced to the
screening effect due to the multiple scatterings, which gives the short-range tight-
binding Hamiltonian from the ab initio theory. The screening effect is universal
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in the following two meanings; (i) The screening effect is universal among different
elements in a same structure, (ii) The screening effect is universal among different
structures. This is the origin of the universality of tight-binding Hamiltonian.

In Chapter 3, we will investigate the group IV elements, systematically, within
tight-binding Hamiltonian forms. The universality discussed in this section will be
used as the tendency that the ratio of the interatomic hoppings {Vssσ, Vspσ, Vppσ, Vppπ}
is almost unchanged among the elements in a same structure. Note that recent de-
velopments in the MTO theory will be discussed in Section 3.3.
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2.3 Generalized Wannier states

This section introduces the generalized Wannier state, which was developed by Wal-
ter Kohn [21, 22] in the context of large-scale calculations. Its formulation is a
generalization of the (conventional) Wannier states [23, 24].

Foundations

The generalized Wannier states {φi} is defined as localized wave functions that
satisfy the equation

Heff |φi〉 =
occ∑
j=1

εij|φj〉. (2.43)

and the orthogonality

〈φi|φi〉 = δij . (2.44)

Equation (2.43) has been derived in the previous section (Section 2.1) as Eq. (2.9).
As explained in Section 2.1, the solutions of Eq. (2.43) is equivalent to the unitary

transformation of the eigen states {φ(eig)
j }

|φi〉 =
occ.∑
j

Uij |φ(eig)
j 〉, (2.45)

where Uij is a unitary matrix. The Hamiltonian matrix with respect to Wannier
states

〈φi|Heff |φj〉 (2.46)

has non-zero off-diagonal elements unlike that with eigen states. It is crucial that
the generalized Wannier states reproduce the one-body density matrix, Eq. (2.16),
and any physical quantity in the trace form of Eq. (2.19).

Here we derive the conventional Wannier states as a specific case of Eq. (2.45).

In periodic systems, eigen states are Bloch states {ψ(Bloch)
νk } with the suffices of the

band ν and the k-point k, the point in the Brillouin zone. Within an isolated single
band, the Wannier states can be defined Wνl with the suffices of the band ν and the
lattice vector l;

Wνl(r) =
∫
dk e−ikrψ

(Bloch)
νk (r), (2.47)

where the integration is done within the Brillouin zone. In the present context, the
corresponding unitary matrix U is given by

Uij ⇒ Uνl,ν′k ≡ δνν′ e−ikr. (2.48)

Appendix D.1 shows a simple case with one dimensional single band case, in which
the off-diagonal elements 〈Wνl|Heff |Wνl′〉 corresponds to the Fourier coefficients of
the energy dispersion εν(k). As shown in the above discussion, the original Wannier
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state is given by the unitary transform only within an isolated single band (ν = ν ′),
while the generalized Wannier states are given by the unitary transform within
different bands. (ν �= ν ′). Moreover, the concept of the generalized Wannier state
can be applicable to non-periodic cases.

The concept of the generalized Wannier state is used for practical large-scale
order-N methods [25, 26, 27], in which approximate Wannier states are constructed.
In Section 4.2, we will derive a mean-field equation for the generalized Wannier
states, which is equivalent to Eqs. (2.43) and (2.44). The mean-field equation gives
practical order-N methods for constructing the generalized Wannier state within
variational and/or perturbative procedures.

Discussions

Apart from large-scale calculations, the generalized Wannier state is also discussed
in a different methodology. The generalized Wannier state can be constructed by
the explicit unitary transforms from the eigen states, as a post-process of the con-
ventional electronic structure calculations. This method is not an order-N method.
Such methodologies are seen, from 60’s, for calculation of molecules with the Hartree-
Fock theory [28, 29, 30, 31]. Recently, the application with the DFT calculations
was given [32], in which a measure of the delocalization is defined by the functional

Ω ≡
occ.∑
j

[
〈φj|r2|φj〉 − |〈φj|r|φj〉|2

]
. (2.49)

The unitary transformations are done iteratively, so as to minimize the above func-
tional. Figure 2.2 shows the results of crystalline silicon. The resultant Wannier
state |φi〉 is well localized as a bonding orbital. The suffix i of the Wannier state
|φi〉 indicates the bond site as its localization center. It is also important that the
Wannier state has a node on the neighboring bond sites, because of the orthogonal-
ity to the other Wannier states whose centers are located on the neighboring bond
sites.

Within simple molecules, a semi-qualitative process may be also possible, to
construct the Wannier state. Such an example is given in Ref. [31], which is reviewed
in Ref. [33]. Here a water molecule (H2O) is discussed. So as to construct the
Wannier states, the four valence eigen states, labeled with (2a1), (3a1), (1b2), (1b1),
are transformed successively only in the three steps. In each step, the unitary
transformation is done between the selected two states, in a two dimensional rotation
form with an empirically chosen rotational angle;

(i)

(
(la1)
(ba1)

)
≡ 1

5

(
4 3
−3 4

)(
(3a1)
(2a1)

)
(2.50)

(ii)

(
(l1)
(l2)

)
≡ 1√

2

(
1 1
−1 1

)(
(1b1)
(la1)

)
(2.51)

(iii)

(
(bOH1)
(bOH2)

)
≡ 1√

2

(
1 1
−1 1

)(
(1b2)
(ba1)

)
. (2.52)

The resultant Wannier states are labeled with (l1), (l2), (bOH1) and (bOH2). They
are shown in Table 2.1, which are quite similar to those constructed by the quan-
titative method [31, 33]. We can assign the two lone pair orbitals (l1), (l2) and the
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Figure 2.2: The Wannier states of bulk silicon [32] (a) Profile along the Si-Si bond.
(b) Contour plot in the (110) plane of the bond chains. [N. Marzari and D. Vander-
bilt, Phys. Rev. B56, 12847 (1997)].

two bonding orbitals (bOH1), (bOH2) between the oxygen and hydrogen atoms. In
Chapter 4, we will discuss that one of the large-scale order-N methods is an iterative
procedure with the Wannier states (the variational order-N method). The knowl-
edge of approximate Wannier states, such as those in Table 2.1, will be important
as reliable initial wave functions in the iterative procedure.

Finally, we comment on other related theoretical concepts. There are several
proposals to describe ‘chemical’ bonding orbitals in condensed matters. We pick
out such two concepts called ‘crystal orbital overlap populations’ (COOP) [34] and
‘crystal orbital Hamiltonian populations’ (COHP) [35]. Though their mathematical
formulations are different from the generalized Wannier states, such concepts should
be related to the present one.

O(2s) O(2px) O(2py) O(2pz) H1(1s) H2(1s)
(l1) 0.655 -0.382 0.707 -0.103 -0.103
(l2) 0.655 -0.382 -0.707 -0.103 -0.103

(bOH1) 0.235 0.409 0.412 0.565 -0.162
(bOH2) 0.235 0.409 -0.412 -0.162 0.565

Table 2.1: Approximate Wannier states in water molecule (H2O) [31, 33]; the
four Wannier states (l1), (l2), (bOH1), (bOH2) are expressed as the coefficients of the
2s,2px,2py,2pz orbitals of the oxygen atom and the 1s orbitals of the two hydrogen
atoms. Here we ignore the small contribution by the 1s orbital of the oxygen atom.
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2.4 Fundamentals of order-N methods

As discussed in Chapter 1, the order-N method is a general concept for large-scale
calculations, in which the computational cost is proportional to the system size.
This section describes the fundamental concept of the practical methodology.

The present purpose for large-scale calculations is restricted to structural proper-
ties, that is, the total energy calculation and the molecular dynamics. This restric-
tion is crucial for practical order-N methods, when the total electronic structure
energy Etot does not depend explicitly on off-diagonal long-range components of
the one-body density matrix (ρ(r, r′)). Recently, as the foundation of the order-N
method, Walter Kohn proposed a general concept called ‘nearsightedness principle’
[36], which is closely related to the Hohenberg-Kohn theorem [1]. Now we can recall
that the Hohenberg-Kohn theorem gives the ground state energy as a functional of
the charge density n(r) and that the charge density is the diagonal elements of the
density matrix (n(r) = ρ(r, r)). Instead of such a general theory, we discuss two
typical examples; one is the free electron system and the other is a system with a
short-range tight-binding Hamiltonian.

Example with free electrons

In the free electron system, the Hamiltonian is simply the kinetic energy part

H0 ≡ −1

2
∆ (2.53)

and the ground state is characterized by the Fermi wavenumber kF. The details
of the following calculations will be given in Appendix D.2 and hereafter only the
results are shown in this section. The total energy per volume is calculated in the
reciprocal space by

E

V
=

∫
k<kF

dk

(2π)3

1

2
k2 =

k5
F

20π2
. (2.54)

The corresponding one-body density matrix is defined as

ρ(r1, r2) ≡
∫

dk

(2π)3

eik·r1

√
V

e−ik·r2

√
V

=
∫

dk

(2π)3

eik·(r1−r2)

V
. (2.55)

Due to the uniform property, the density matrix is reduced to that of the function of
the distance r ≡ |r1 − r2|. Without the volume factor 1/V , we redefine the density
matrix and calculate

ρ(r) ≡
∫

k<kF

dk

(2π)3
eik·r

=
2

(2π)2

{
−kF

r2
cos kFr +

1

r3
sin kFr

}
. (2.56)

The resultant density matrix shows a long-range oscillation with the Fermi wave
number kF

ρ(r) ∝ cos kFr

r2
(r → ∞), (2.57)
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which is known as the Friedel oscillation. The short-range behavior, on the other
hand, is given by the Taylor expansion as

ρ(r) =
2

(2π)2

(
C0 −

C2

2
r2 +O(r4)

)
, (2.58)

using the zero-th and second Taylor coefficients

C0 ≡
k3

F

6
, C2 ≡

k5
F

15
. (2.59)

The total energy per volume can be also calculated by the density matrix as

E

V
≡ 1

V
Tr[ρH0] =

1

V

∫
dr1

−∆r1

2
ρ(r1, r2)

∣∣∣∣
r1=r2

= lim
ε→0

Esphere(ε)

(4πε3/3)
(2.60)

Here Esphere(ε) is the energy of a tiny (real-space) sphere with the radius of ε. Using
Eq.(2.58) and the calculation

Esphere(ε) ≡
∫

r<ε
dr

−∆r

2
ρ(r) =

C2

π
ε3 +O(ε5), (2.61)

the energy per volume is given by

E

V
= lim

ε→0

Esphere(ε)

(4πε3/3)
=

3C2

4π2
. (2.62)

With the definition C2 ≡ k5
F/15, the above result reproduces that of Eq. (2.54).

This shows that the total energy is determined only by the second order Taylor
coefficient C2. This statement is understandable, because the present Hamiltonian,
the Laplacian operator, is the second order derivative. In other words, the total
energy is determined explicitly by the short-range behavior of the density matrix.
Here it should be emphasized that the above density matrix ρ(r) has the off-diagonal
long-range components, as in Eq. (2.57), and the system is metallic. In short, the
total energy is governed by the short-range behavior of the density matrix, while
the transport property is governed by the off-diagonal long-range behavior.

Example with short-range tight-binding Hamiltonians

Now we turn to the second example, a system with a short-range tight-binding
Hamiltonian H . This example is directly related to the calculations in the present
thesis. In such a system, the total electronic structure energy is given in the form of

Eelec = Tr[ρH ] (2.63)

with the one-body density matrix ρ. The explicit matrix expression is

Eelec = Tr[ρH ] =
NA∑
I

Nint∑
J

ν∑
α

ν∑
β

ρJβIαHIαJβ, (2.64)

where (I, α) or (J, β) denotes an atomic orbital. NA is the number of atoms in
the system (I = 1, 2..., NA). The number of orbitals per atom is given by ν. For
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example, ν = 4 for the minimal tight-binding Hamiltonian with the s and p orbitals
(|s〉, |px〉, |py〉, |pz〉). Since the tight-binding Hamiltonian is short-range, the number
of atoms for non-zero Hamiltonian matrix elements (Nint) is finite for each atom.
The number of atoms (Nint) is, typically, that of the first or second nearest neighbor
atoms. The calculation of the trace in Eq. (2.64) requires the computational cost of

ν2NintNA. (2.65)

Here we can say, again, that the total energy in Eq. (2.64) is determined explicitly
by the short-range behavior of the density matrix, due to the short-range property
of the Hamiltonian. For comparison, we discuss a classical model with a short-range
two-body potential, in which the potential energy is given by

Eclassical =
NA∑
I

Nint∑
I

UIJ , (2.66)

where UIJ is the two-body potential between the I-th and J-th atoms. The sum-
mation in Eq. (2.66) requires the computational cost of

NintNA. (2.67)

Here one can find that the computational cost of the present electronic structure
calculation should be, at least, ν2 times larger than that of a classical model. We
note that the prefactor ν2 originates from the orbital freedom, that is, the quantum
mechanical freedom. This prefactor will be discussed, in Section 5.4, as an essential
point for the parallelization of the order-N method.

Discussions

The above two cases are typical examples of the situation in which the total elec-
tronic structure energy does not depend explicitly on off-diagonal long-range com-
ponents of the one-body density matrix. As is seen in the beginning of the this
section, the above situation is suitable for order-N methods to calculate the total
energy, because the order-N method reproduces only the short-range behavior of the
density matrix, at a sacrifice of the accuracy in the long-range behavior. The above
discussion warns us that we should be careful, when we calculate various quantities
〈X̂〉 in an order-N method. If the operator X̂ has off-diagonal long-range compo-
nents, the calculation of 〈X̂〉 may be in a poor accuracy with the order-N method.
Such a situation appears, when we calculated the spatial spread of a Wannier state
φi

〈φi|(r̂ − r̄i)
2|φi〉 (2.68)

from its localization center r̄i = 〈φi|r̂|φi〉 [27]. The calculation was done with or
without an explicit localization constraint on the Wannier state φi. Since the oper-
ator (r̂− r̄i)

2 is a long-range operator, the value of 〈φi|(r̂− r̄i)
2|φi〉 is more sensitive

to the localization constraint than that of the energy 〈φi|H|φi〉.
Here the long-range behavior of the density matrix is discussed. With a finite

temperature form, the density matrix of the free electrons, Eq. (2.56), is modified
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into

ρ(r) ≡
∫

k<kF

dk

(2π)3
eik·rfτ

(
k2

2

)
, (2.69)

where fτ (ε) is the Fermi-Dirac function

fτ (ε) =
1

1 + e(ε−µ)/τ
(2.70)

with a finite temperature τ and the chemical potential µ. An analytic evaluation
[37] gives the resultant density matrix ρ(r) with an additional exponential decay
factor of

exp
[
−

(
1 +

√
2
) τ

2εF
kFr

]
, (2.71)

where εF ≡ k2
F/2 is the Fermi energy. The above analysis shows that the long-range

oscillation, in Eq. (2.57), at the exact ground state (τ = 0) originates from the
discontinuity of the occupation number at the Fermi level

fτ (ε) → θ(εF − ε) in τ → 0. (2.72)

In the mathematical terms, such an oscillation is known as the Gibbs phenomena,
which is seen in standard textbooks of applied mathematics [38]. Such a long-range
oscillation will be suppressed, when the discontinuity of the occupation number at
k = kF is faded away, as discussed above.

The discontinuity of the occupation number is equivalent to the idempotency of
the ground state density matrix

ρ2 = ρ. (2.73)

From the above discussion, we can say that an essential point of the order-N methods
is relaxing the exact idempotency in Eq. (2.73), which will modify the off-diagonal
long-range behavior of the density matrix. The relaxation of the exact idempotency
is seen, not only in Kohn’s paper [36] picked out in the beginning of this section,
but also in the practical order-N methods that will be explained in the next section
(Section 2.5).

To end up this section, we comment on the order-N methods for transport phe-
nomena. So far, we have explained the fundamentals of the order-N method for
structure or the total energy. There exist, on the other hand, order-N methods for
transport phenomena. An example is found in Ref.[39] with the use of the Kubo
formula. Since the total energy calculation is not essential in the discussion of
transport phenomena, the order-N methods for the transport phenomena should be
constructed with foundations different from the present ones. See the proceedings
of a recent international conference [40], as an overview of the recent developments
and applications. Though we do not discuss methods for transport phenomena in
this thesis, the ultimate goal for large-scale electronic structure calculations should
be contain both methods for structural and transport phenomena.
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2.5 Practical order-N methods

Here we review several practical order-N methods for electronic structure theory
applicable to molecular dynamics. This section describes only the mathematical
background of each method. See review or comparison papers [41, 42, 43, 44, 45] for
details, applications, theoretical generalizations and so on. We pick out the following
five typical methods; [I] the density matrix method, [II] the localized orbital method,
[III] the Fermi operator expansion method, [IV] the recursion or bond-order method,
and [V] the orbital-free DFT method. Except the last one, we restrict the discussion,
for simplicity, to a tight-binding system that is already discussed in Section 2.4, The
total electronic energy is given by

Eelec = Tr[ρH ] (2.74)

with the one-body density matrix ρ. The correct density matrix ρ at the ground
state should satisfy the idempotency

ρ2 = ρ. (2.75)

The explicit matrix form is given as

HIα,Jβ ≡ 〈Iα|H|Jβ〉 (2.76)

with the suffices of atoms (I, J) and orbitals (α, β). After the review of the five
methods, we will briefly discuss a general point for practical large-scale calculations.

I : Density matrix method

The ‘density matrix method’[46] is a variational method in which the explicit matrix
elements of the one-body density matrix (ρIαJβ) are the variational freedoms. The
total energy to be minimized iteratively is given as

E
(I)
elec[ρ] = Tr[(3ρ2 − 2ρ3)(H − µ)], (2.77)

where µ is the chemical potential that should be property chosen to reproduce the
total electron number. The energy gradient

∂E
(I)
elec

∂ρIα,J,β
(2.78)

is used for the iterative minimization procedures. The method is closely related to
a procedure on the density matrix ρ

ρ⇒ ρ(new) ≡ 3ρ2 − 2ρ3, (2.79)

which is called ‘purification’ procedure [47]. If the ‘old’ density matrix ρ has an
approximate idempotency (ρ2 ≈ ρ), the new ‘purified’ density matrix ρ(new) can be
expected to have a better approximate idempotency in the sense that each eigen
value becomes closer to zero or one. The above property can be explained, when
one see the function form of y = 3x2 − 2x3, as plotted in Fig. 2.3. To see how to
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reach the ground state with this energy functional, we demonstrate a case in which
the density matrix is given as

ρ ≈
∑

i

fi|φ(eig)
i 〉〈φ(eig)

i |, (2.80)

where the occupation numbers {fi} are nearly equal to be one or zero and the
chemical potential µ is property chosen. The occupation number fi of an eigen
state contribute the energy by

(3f 2
i − 2f 3

i )(εi − µ). (2.81)

For an occupied eigen level (εi < µ), the energy function in Eq. (2.81) has a minimum
at fi = 1, while, for an unoccupied eigen level (εi > µ), the energy function in
Eq. (2.81) has a minimum at fi = 0. Therefore, one can expect that the occupation
number will be convergent to one (fi → 1) for occupied levels and zero (fi → 1) for
unoccupied levels. In both cases, however, one may find that the above minimum
is not the global minimum, but a local minimum. The energy function in Eq. (2.81)
diverges at fi = ∞ or fi = −∞, which is sometimes called ‘runaway solution’. The
above unphysical ‘runaway’ solution means a large deviation from the approximate
idempotency (ρ2 ≈ ρ). In practical program codes, such a large deviation can be
avoided by introducing an additional inner loop of the purification procedure, given
by Eq. (2.79), in the iterative energy minimization procedures. This inner loop
is done iteratively till the density matrix ρ recovers an approximate idempotency
(ρ2 ≈ ρ) within a satisfactory deviation from the exact one. It should be noted that,
for the convergence to the correct ground state, the initial density matrix ρ should
be properly prepared, which is a common problem among iterative methods.

Figure 2.3: The function y ≡ 3x2 −2x3, which is used in the density matrix order-N
method.

II : Localized orbital method

The ‘localized orbital method’ [25, 26, 27] is directly related to the theory in this
thesis. The present ‘localized orbital’ is the generalized Wannier state. The total
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energy is given by the functional, with respect to occupied one electron states {φi},
as

E
(II)
elec[{φi}] =

occ.∑
i,j

Aji〈φi|H − ηs|φj〉 (2.82)

Aij ≡ 2δij − Sij (2.83)

where Sij ≡ 〈φi|φj〉 is the overlap matrix between occupied states. Here the wave
functions {φi} are not under the orthogonal constraint (Sij �= δij). The energy
parameter ηs is what we call ‘energy shift parameter’. The value of ηs should be
chosen large sufficiently, as will be explained below. A physical quantity 〈X〉 is
redefined as

〈X〉 =
occ.∑
i,j

Aji〈φi|X|φj〉. (2.84)

For example, the charge density n(r) is given by

n(r) =
occ.∑
i,j

Ajiφ
∗
i (r)φj(r). (2.85)

It is noteworthy that, if we choose the matrix A as A = S−1, the definition in
Eq. (2.84) will be reduced to the standard one, because a set of orthogonal wave
functions {ψk} can be constructed as

|ψk〉 ≡
occ.∑
j

(
S−1/2

)
jk
|φj〉. (2.86)

Using the orthogonal wave functions {ψk}, a physical quantity is expressed by

〈X〉 =
occ.∑
k

〈ψk|X|ψk〉

=
occ.∑
k

occ.∑
i,j

(
S−1/2

)
ki
〈φi|X|φj〉

(
S−1/2

)
jk

=
occ.∑
i,j

(
S−1

)
ji
〈φi|X|φj〉, (2.87)

which gives Eq. (2.84) with the choice of A = S−1. The orthogonality of {ψk}
(〈ψk|ψl〉 = δkl) is directly derived from Eq. (2.87) in the choice of X = 1. When the
inversed matrix S−1 is expanded as

S−1 = {I − (I − S)}−1

=
∞∑

k=0

(I − S)k

≈ I + (I − S) + (I − S)2 + · · · (2.88)

the sum of the first two terms gives the matrix A in Eq. (2.83).
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Now we see how the above choice of the matrix A works in the present energy
functional. We rewrite Eq. (2.82) as

E
(II)
elec[{φi}] =

occ.∑
i,j

Aji〈φi|H|φj〉 + ηs

occ.∑
i,j

|〈φi|φj〉 − δij |2 (2.89)

where a constant energy term is ignored. The minimization of the second term
causes a feedback force to the orthogonal relation

〈φi|φj〉 → δij (2.90)

with a sufficiently large value of ηs (ηs = ∞). We call the second term in Eq (2.89)
as ‘penalty’ term in the sense that, when the orthogonal relation is broken in the
iterative minimization procedure, the energy will increase as a ‘penalty’. The name
of ‘penalty’ is seen in Ref.[36] in similar meanings, though the mathematical for-
mulation is different from the present context. Moreover, one can mathematically
prove [25] that, when the value of ηs is chosen to be larger than the highest occupied
level εHO (ηs > εHO), the energy functional in Eq. (2.82) has the correct ground
state energy EGS as a stable point

E
(II)
elec[{φi}] ≥ EGS. (2.91)

Since the wave functions will be orthogonal in the correct ground state (Sij = δij),
the matrix A will be reduced to Aij = δij and Eq. (2.84) will be reduced to Eq. (2.13).
It is essential that the minimization of the functional in Eq. (2.82) can be done
without any explicit orthogonalization procedure, such as the constraint scheme
with the Lagrange multipliers or the Gram-Schmidt orthogonalization procedure.
Unlike the other methods in this section, this method does not require a calculation
of the chemical potential. The total charge Nelec may be deviated from the given
value N

(0)
elec of the electron number

Nelec ≡
∫
n(r)dr

= N
(0)
elec −

occ.∑
i,j

|〈φi|φj〉 − δij |2 (2.92)

during the iterative minimization procedure. The above deviation, however, will
reduce to zero (Nelec → N

(0)
elec) in the final (ground) state, due to the property of

Eq.(2.90).
In Section 4.2, we will derive a mean-field equation for the generalized Wannier

state, which is equivalent to the present formulation but is derived from a different
theoretical background.

III : Fermi operator expansion

The Fermi operator expansion [48, 49] is based on the Chebyshev (Tschebyscheff)
polynomials expansion. Within the explanation of this method, we use the explicit
‘hat’ notation, say Ĥ, for operators. A density matrix is formally given as

ρ̂ = fFD(Ĥ) (2.93)
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where fFD(ε) is the Fermi-Dirac distribution

fFD(ε) ≡ 1

1 + e(ε−µ)/τ
(2.94)

with a finite temperature parameter τ and the chemical potential µ. Here the above
‘temperature’ parameter τ may be different from the temperature of the system,
since a finite value of τ is essential for the numerical stability of the polynomial
expansion. An order-N algorithm is obtained, when the operator in Eq. (2.93) is
expanded by a finite set of the Chebyshev polynomials {Tk(x)} as

fFD(Ĥ) ≈
npl∑
k=0

akTk

(
Ĥ − ε0

W

)
, (2.95)

where the energy parameters ε0 and W should be chosen so that the operator

x̂ ≡ Ĥ − ε0

W
, (2.96)

a shifted and scaled Hamiltonian, has eigen values only within the range of −1 < x <
1. Moreover, since the original Fermi-Dirac function is non-zero for −∞ < ε < ∞,
the function fFD(ε) used in Eq. (2.94) should be interpreted by a truncated one
within a finite energy range (εmin < ε < εmax). The lower boundary energy εmin

should be chosen to be less than the lowest eigen level and the higher boundary
energy εmax should be so large that the occupation is almost zero (fFD(εmax) 
 1).
In result, the energy range W ≡ εmax−εmin is comparable to the energy band width
by the given Hamiltonian H . For the above truncated function, the coefficients
({ai}) are determined uniquely, due to the orthogonality of the Chebyshev polyno-
mials. The order of polynomial expansion npl is crucial for the computational cost.
Since the npl-th order polynomial expansion corresponds to the energy resolution of
O(W/npl), an optimal polynomial order to reproduce fFD(ε) is estimated as

npl ≈
W

τ
. (2.97)

A typical example of the Chebyshev polynomial expansion of fFD(ε) is seen in Fig.7
in Ref. [42], which describes the diamond case with npl = 40. With Eq. (2.95) and
a complete basis set {|χi〉}

1 =
(basis)∑

i

|χi〉〈χi|, (2.98)

the total electronic energy is expressed by

E
(III)
elec = Tr[ĤfFD(Ĥ)]

=
(basis)∑

i

〈χi|ĤfFD(Ĥ)|χi〉

=
(basis)∑

i

npl∑
k=0

ak〈χi|ĤTk(x̂)|χi〉. (2.99)
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Here the vectors

|χ(k)
i 〉 ≡ Tk(x̂)|χi〉 (2.100)

can be calculated by a recurrence relation

|χ(k+1)
i 〉 = 2x̂|χ(k)

i 〉 − |χ(k−1)
i 〉, (2.101)

due to the same recurrence relation of the Chebyshev polynomials

Tk+1(x) = 2xTk(x) − Tk−1(x). (2.102)

IV : Recursion or bond-order method

The ‘recursion’ or ‘bond-order’ method [50] means the molecular dynamics based
on the recursion method [51]. The essence of the original recursion method is as
follows (See Appendix D.3 for details); For an ‘input’ vector |u〉, the projected Green
function is given as the following continued fraction

〈u| 1

ε+ i0 −H
|u〉 ≈ 1

ε−a1 −
b21

ε−a2 −
b22....

ε− anR
−

b2nR

TnR
(ε)

. (2.103)

Here we restrict the discussion to real vectors and matrices. The coefficients {an, bn}
for n = 1, 2...nR are real and uniquely determined for the given input vector |u〉.
The integer nR, the order of the continued fraction, should be properly chosen. The
function TnR

(ε) is a complex variable and is called ‘terminator’. Several explicit
function forms of TnR

(ε) are given in textbooks. It it noteworthy, if nR is equals
to the size of the Hamiltonian matrix, the coefficients {an, bn} give, formally, a
tridiagonalization of the original Hamiltonian H using a unitary matrix U ;

U−1HU =

⎛
⎜⎜⎜⎝
a1 b1
b1 a2 b2

b2 a3 b3
... ... ...

⎞
⎟⎟⎟⎠ . (2.104)

When all the projected Green functions (〈χi|G(ε)|χi〉) are calculated for the orthog-
onal complete basis set {|χi〉}, the density of states (DOS) D(ε) is given as

D(ε) = −1

π

basis∑
i

Im〈χi|G(ε+ i0)|χi〉. (2.105)

Figure 2.4 shows an example of the DOS calculated by the recursion method within
the tight-binding Hamiltonian [6], in which several calculations with different values
of nR are compared [52]. The system is silicon crystal with 512 atoms in the periodic
cell. The energy origin is shifted downward by 0.46 eV so that the highest occupied
level in the exact diagonalization is placed at ε = 0.0. The lowest unoccupied level
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Figure 2.4: Density of states (DOS) calculated by the recursion method with several
values of nR [52]. The system is silicon crystal using a tight-binding Hamiltonian.
The simulation cell contains 512 atoms. The exact diagonalization gives the highest
occupied and the lowest unoccupied levels at ε = 0.0 and ε = 0.8 eV, respectively.

in the exact diagonalization is placed at ε = 0.8 eV. The basis set {χi} for the input
vectors in the recursion method is chosen as the set of the sp3 orbitals on all the
bond sites in the diamond structure. With increasing nR, an energy gap appears in
the energy region of 0 ≤ ε ≤ 0.8 eV, as in the exact diagonalization.

For molecular dynamics, the off-diagonal elements of the density matrix (ρij)
should be calculated. From the off-diagonal matrix elements of the Green function,
the density matrix is given as

〈χi|ρ|χj〉 = −1

π
Im

∫
dε fFD(ε) 〈χi|G(ε+ i0)|χj〉, (2.106)

where fFD(ε) is the Fermi-Dirac distribution of Eq. (2.94). The above ‘temperature’
parameter τ may be different from the temperature of the system, as in the Fermi
operator expansion. An off-diagonal element of the Green function 〈χi|G(ε)|χj〉 can
be calculated from the recursion method for 〈(χi + χj)|G(ε)|(χi + χj)〉, because of
the relation

〈χi|G(ε)|χj〉 =
1

2
[〈χi + χj|G(ε)|χi + χj〉 − 〈χi|G(ε)|χi〉 − 〈χj |G(ε)|χj〉] . (2.107)

After the calculation of the off-diagonal elements of the Green function (〈χi|G(ε+
i0)|χj〉), the energy integral in Eq. (2.106) is done in a proper numerical scheme so
as to obtain ρij .

Note that the term ‘bond order’ is based on the fact that the basis

|+〉 ≡ |χi〉 + |χj〉√
2

(2.108)

appears in Eq. (2.107). The basis |+〉 can be interpreted as a bonding orbital, if
|χi〉 and |χj〉 are atomic orbitals on different atom sites. In the above situation, the
partial density matrix 〈+|ρ|+〉 is the occupation number of the bonding orbital |+〉.
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V : Orbital-free DFT method

The ‘orbital-free’ DFT method is based on a foundation quite different from the other
methods explained in this section. Though this method is based on the total energy
functional of the DFT, given by Eq.(2.2), the kinetic energy Ekin is transformed into
an explicit functional of the charge density ;

Ekin ⇒ Ekin[n]. (2.109)

The resultant total energy functional Etot is an explicit functional of the charge
density n(r). With the chemical potential µ, the variational equation

δ

δn(r)

{
Etot[n] − µ

∫
n(r)dr

}
= 0 (2.110)

determines the charge density n(r).
A proper functional form for Ekin should be available. As a simplest form, the

Thomas-Fermi function

E
(TF)
kin [n] ≡ 3

10
(3π2)2/3

∫
{n(r)}5/3dr (2.111)

appears in standard textbooks or reviews, such as Refs.[53, 54, 8]. In general, a
possible guiding principle for constructing the functional Ekin[n] is to reproduce the
Lindhard dielectric function (See standard textbooks like Ref.[54]). The Thomas-
Fermi functional reproduces the Lindhard dielectric function in the long wavelength
limit. Another simple functional is the von Weizsäcker functional

E
(vW)
kin [n] =

1

8

∫ |∇n(r)|2
n(r)

dr, (2.112)

which reproduces the Lindhard dielectric function in the short wavelength limit.
From the above discussion, the sum of the two functionals

Ekin[n] = E
(TF)
kin [n] + E

(vW)
kin [n] (2.113)

seems to be a good candidate for the proper functional form. It is noteworthy that,
if the second term in Eq. (2.113) is divided by nine, the functional is transformed
into the simple gradient expansion form in the famous Hohenberg-Kohn paper[1].
A typical behavior of the charge density in the orbital-free DFT is shown as a figure
in Ref. [55], which is reviewed in Ref. [56]. The calculated system is the neutral
Kr atom and the orbital-free result is compared with the Hartree-Fock result. A
characteristic feature of the orbital-free result is the lack of the quantum mechanical
oscillatory structure of the radial density. See a review [56] for more discussions.

Based on the above orbital-free method, molecular dynamics simulations are
performed with local pseudo potentials [57]. Since a local pseudo potential energy

E
(loc)
PP , in a form of

E
(loc)
PP =

∫
V

(loc)
PP (r)n(r)dr, (2.114)
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is an energy functional with respect to the charge density, it is applicable to the
orbital-free method. The functional form for such a local potential should be con-
structed properly. A possible guiding principle for constructing the functional E

(loc)
PP

is, again, to reproduce the Lindhard dielectric function. A typical application is a
simple metal that can be understood, basically, by the nearly free electron picture.
Several improved functional forms are proposed for the kinetic energy functional
and the local pseudo potential. See, for example, Ref.[58] and references therein.

A technical comment is added; In the above molecular dynamics simulations, the
(valence) charge density is expanded by the plane-wave basis. Since such a program
code is almost a subset of that in ab initio molecular dynamics with the plane-wave
basis (See Appendix A.1), the programing effort may be small for the orbital-free
method, if one already has a plane-wave code of ab initio molecular dynamics.

Discussion

So far, we have reviewed five typical order-N methods. Finally, we point out the im-
portance of the prefactor, not the order, of the computational costs. Consider a sim-
ple case of a nearest neighbor tight-binding Hamiltonian H on a three-dimensional
cubic lattice. In this system, the Hamiltonian is operated by n times successively
on a vector |χ(0)〉 localized within an atom. The resultant vector

|χ(n)〉 ≡ Hn|χ(0)〉 (2.115)

has a spatial spread only within a local region in the system, which is a desirable
situation in an efficient order-N method. The above situation is true, if the system is
sufficiently large. The resultant vector |χ(n)〉 contains (2n+ 1)3 atoms as its spatial
spread in real space. In the case with n = 10, for instance, the above number of
atoms is (21)3 ≈ 8000. In a system with less than or about equal to 8000 atoms,
the vector |χ(10)〉 is not localized, if without any additional approximation. On the
other hand, an ideal order-N algorithm may not be required for several large-scale
calculations. For example, a calculation with O(N2) computational costs can be
faster than the diagonalization method with O(N3) computational costs. Therefore,
the prefactor of the computational costs should be discussed for practical large-scale
simulations. We have already discussed this point, in Section 2.4, in which the
number of orbitals per atom contributes the prefactor of the computational cost.
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3.1 Universal tight-binding theory

In this chapter, we investigate tight-binding formulations as a fundamental concept
for simplifying the electronic structure energy. The ab initio theory in Chapter 2.2
gives an universal property to the tight-binding Hamiltonian in the sense that the
explicit function forms of the hopping integrals are universal in the scaled energy
and length unit. Such universality have been founded empirically for decades [59].

In this section, the group IV elements are focused. Among them, the diamond-
structure solids are found in carbon, silicon, germanium and the low temperature
solid phase of tin (α-Sn). For these materials, nearest-neighbor tight-binding Hamil-
tonians can be constructed within the minimal orbitals (s, px,py,pz). Such tight-
binding Hamiltonians are defined by five parameters; One is an intra-atomic param-
eter εp−εs, the energy difference between the atomic s and p orbitals. The other four
parameters are the four interatomic hoppings (Vssσ, Vspσ, Vspπ, Vppπ, ) in the Slater-
Koster form [60]. The explicit numerical data in this section are calculated with a
standard parametrization [61], which is systematically constructed among the group
IV elements in the diamond structure solids (C, Si, Ge, α-Sn). As details, the above
parametrization is carried out with the five orbitals, that is, the conventional four
minimal orbitals (s, px, py, pz) and the extra ‘s∗’ orbital [61]. The physical origin of
the extra s∗ orbital is the spherical average of the five d orbitals. See Appendix A.2
for more explanation. The s∗ orbital affects mainly on the conduction band [61],
while the characters of the valence band is not significantly changed. Moreover, the
weight of the s∗ orbitals among occupied states is only 2.1 % in the silicon case and,
at most, 2.8 % in the tin case. The above situation justifies the molecular dynamics
simulation without the s∗ or d orbitals, since the total energy is contributed only
by the valence (occupied) band. It should be noted that the essence of the present
theory is based on the universality of the tight-binding Hamiltonian and does not
depend on details of the parametrization.

C Si Ge α-Sn β-Sn (≤2.n.n.) Pb

d [Å] 1.54 2.35 2.44 2.80 3.02 (3.17) 3.50
NC 4 4 4 4 4 (6) 12 (FCC)
2tsp3 24.4 9.4 9.2 7.7 – –

Table 3.1: Several data for the group IV elements; the nearest neighbor atomic dis-
tance (d), the coordination number (NC), the number of atoms within the distances
of d, the hopping energy along sp3 bonds (tsp3). The transfer integrals are from the
tight-binding formulation in Ref.[61]. In β-Sn, the values with the second nearest
neighbor distance are also shown inside the bracket. In β-Sn, the number of atoms
is six within the second nearest neighbor distance.

Now the tight-binding Hamiltonian is described with sp3 orbitals. The four
atomic orbitals {|s〉, |px〉, |py〉, |pz〉} can be transformed into the four sp3-hybridized
bases. With the above bases, the diagonal elements of the Hamiltonian matrix are
given by

εh ≡ 1

4
εs +

3

4
εp (3.1)
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As the off-diagonal elements, the hopping integrals between the sp3-hybridized or-
bitals are classified into five types. Among them, the biggest one is that along the
sp3 bonds

β1 ≡
1

4

{
Vssσ − 2

√
3Vspσ − 3Vppσ

}
. (3.2)

The other interatomic hoppings will be given in Section 5.5. We define the amplitude
of the integral as

tsp3 ≡ |β1|. (3.3)

If only tsp3 is included as the off-diagonal elements, the resultant Hamiltonian is
decomposed into each bond site as

(
εh −tsp3

−tsp3 εh

)
. (3.4)

The solution is the bonding and antibonding orbitals with the sp3-hybridized or-
bitals, |b〉 and |s〉, whose energies are given by

εb ≡ εh − tsp3 (3.5)

εa ≡ εh + tsp3 , (3.6)

respectively. The resultant Hamiltonian is diagonal with respect to the above bond-
ing and antibonding orbitals ;

H0 =
∑
i=1

(|bi〉εb〈bi| + |ai〉εa〈ai|) , (3.7)

where i denote the bond site in the diamond structure. The energy gap εb−εa = 2tsp3

is the physical origin of the covalent bondings and, therefore, the stability of the di-
amond structure. Figure 3.1 shows several data among the group IV elements. Here
we observe that the transfer energy 2tsp3 is a monotonically decreasing function of
the nearest neighbor atomic distance d or the principal quantum number. There-
fore, the diamond structure will be unstable with increasing the principal quantum
number, as observed experimentally. In the tin case, the diamond structure (α
phase or gray tin) appears in the low temperature phase (T ≤ 286K), but the room
temperature phase (β phase or or white tin) has a different structure called ‘β-Sn
structure’. In the lead case, the next heavier element in the group IV elements, the
FCC structure appears with metallic properties.

In the present context, one can think of the β-Sn structure as an intermediate
case between the diamond structure and the FCC structures. The nearest neighbor
atomic distance in β-Sn (3.02 Å) is larger than that in α-Sn (2.80 Å) but smaller
than that in Pb (3.50 Å). Moreover, in the β-Sn structure, each tin has two second
nearest neighbor atoms that are slightly further away (3.17 Å) than the first nearest
neighbor atoms, as in Table 3.1. If we ignore the above difference of the first and
second nearest neighbor distances, the coordination number NC will be defined as
six.



34CHAPTER 3. TIGHT-BINDING THEORY AMONG ELEMENTS AND PHASES

One-parameter theory among elements

The tight-binding theory results in the fact that the ratio among these four inter-
atomic hoppings (Vssσ, Vspσ, Vspπ, Vppπ, ) is almost unchanged among the elements.
With this universality, the number of the independent energy parameters is reduced
to only two. Now we can pick out (εp − εs) and (εa − εb) as the two independent
parameters. These are equivalent to β0 and tsp3 = |β1|, respectively. Now a ratio

αm ≡ εp − εs

εa − εb
≡ εp − εs

2tsp3

. (3.8)

is defined as the unique parameter that explains the chemical trend among the
group IV elements. Such a one-parameter theory can be found in several reviews
and textbooks [59, 62]. The parameter αm in Eq. (3.8) is called ‘metallicity’. The
value of αm increases monotonically from lighter atoms into heavier atoms. The
explicit values in the present parameterizations [61] are αm = 0.34, 0.63, 0.81, 0.91
for C, Si, Ge, α-Sn, respectively. When the real materials are classified by the
parameter αm, the materials are reduced to a universal model with the energy unit
scaled by the transfer energy tsp3 . Since the transfer energy tsp3 is a monotonic
function of the lattice constant (See Table 3.1), the scaling by the transfer energy
tsp3 is equivalent to the scaling by the lattice constant. Therefore, the present one-
parameter description corresponds to the description with a scaled energy or length.

The above chemical trend among the group IV elements influences the character
of the wave functions as the deviation from the ideal sp3 hybridization. So as to
monitor the above deviations, we define the weight of s orbitals f (i)

s , for each wave
function φi, as

f (i)
s ≡

∑
I

|〈φi|Is〉|2, (3.9)

where |Is〉 is the s orbital on the I-th atom. Especially, fs denotes the average of
the occupied wave functions, which is uniquely determined for a system as

fs ≡
∑
I

〈Is|ρ|Is〉 (3.10)

from the density matrix. Figure 3.1 shows the resultant weight of s orbitals, in which
the weight of s orbitals fs is a monotonically increasing function of αm. The above
trend is explained, as follows; In a system with a small metallicity (αm 
 1), the
Hamiltonian will be quite similar to H0 in Eq. (3.7). In such a system, the Wannier
state will be a bonding orbital with the ideal sp3 hybridization (|φi〉 ≈ |bi〉). For
an ideally sp3-hybridized wave function, as |bi〉 in Eq. (3.7), the value of f (i)

s is
f (i)

s = 1/4 from its definition. Here we discuss the opposite limiting case, the case
of αm → ∞. This limiting case corresponds to the dilute case, in which the inter-
atomic hopping β1 will be much smaller than the value of (εp−εs) in Eq. (3.8).
The resultant electronic configuration is s2p2, like an isolated atom, in the sense
that two electrons per atom occupy the s orbital and the other two electrons occupy
the p orbital. The resultant value of fs is fs = 1/2. The corresponding electronic
structure is a p-band metal, because the s band and the p band are well separated
energetically and the s band is fully occupied. In short, the above trends among the
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group IV elements can be interpreted as the change from an sp3-hybridized insulator,
in the lighter elements, into a p-band metal, in the heavier elements. This change
is often called ‘dehybridization’, because the sp3 hybridization is canceled and the
electronic configuration is reduced to that in an isolated atom (fs = 1/4 ⇒ 1/2).

Figure 3.1: The weight of s orbitals fs and the band gap are plotted as the function
of the metallicity parameter αm among the group IV elements. The calculations are
done using a set of tight-binding Hamiltonians [61].

The band gap is estimated using the metallicity parameter αm. The difference
of the antibonding and bonding levels (εa − εb) corresponds to the energy difference
between the band centers of the valence and conduction bands. On the other hand,
the energy (εp − εs) motivates the transfer between bond sites and results in the
finite band widths of the valence and conduction bands. Therefore, the band gap
can be estimated as

∆est ≡ (εa − εb) − (εp − εs) = 2 tsp3 (1 − αm). (3.11)

From Eq. (3.11), a system would be metallic, when αm → 1. This is why the
parameter αm is called ‘metallicity’. In Fig. 3.1, the band gap decreases with the
increase of the metallicity, as expected from Eq. (3.11). Particularly, the metallicity
in α-Sn is almost one (αm = 0.91) and the band gap is reduced to be zero. Since
the vanishment of the band gap means the instability of the sp3 bonding, the above
result is consistent to the fact that the diamond structure is not stable in the heavier
elements.
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3.2 Liquid and surface phases of silicon

In this section, we will discuss that the universal tight-binding theory explains several
structure among non-crystalline phases. This is directly related to the fact that
practical transferable tight-binding Hamiltonians are applicable to non-crystalline
phases. Here, we pick out the liquid phase and the (001) surface of silicon.

Liquid silicon

Liquid silicon is metallic with the coordination number of Nc = 6.4, which is well
reproduced by ab initio [63] and tight-binding [6] molecular dynamics simulations
(Nc ≈ 6.5). We calculate the weight of s orbitals fs in liquid silicon within the tight-
binding Hamiltonian and obtain the result of fs = 0.43. The resultant value is an
intermediate value between that in the solid phase (fs = 0.36) and that in an isolated
atom (fs = 1/2). Table 3.2 shows the weight of s orbitals among different elements
or phases. In the liquid phase, the average of the transfer energy should be smaller
than that in the solid phase, due to the disorder. From the above discussion, the
melting of silicon can be explained by ‘dehybridization’, in which an sp3-hybridized
insulator is changed into a p-band metal.

Si(001) surface and the comparison with C and Ge (001) surfaces

Now we turn to discuss the surface reconstruction. Though carbon, silicon and
germanium form the same (diamond) structure in the bulk phase, they may form
different structures on reconstructed surfaces. One example is seen on the dimer
geometry on the (001) surface. On the silicon case, a pair of surface atoms forms
an asymmetric dimer, which is observed by tight-binding calculations [65], ab initio
calculations [66], and experiments [67]. Figure 3.2(a) shows the geometry of the
asymmetric surface dimer. Here the surface atom near the vacuum region is called
‘up’ atom, while the other surface atom is called ‘down’ atom. Figure 3.3 shows ab
initio calculations for the carbon, silicon and germanium cases [70]. In results, a
symmetric dimer appears in the carbon case, while quite similar asymmetric dimers
appear in the silicon and germanium case.

The above chemical trend on the surface dimer geometry can be explained by
the dehybridization mechanism. A systematic investigation is carried out among
the elements with the metallicity parameter αm. The metallicity parameter for
silicon is given as αm = 0.78 in the present Hamiltonian [6]. Among other minimal
tight-binding Hamiltonians, the values of αm are αm = 0.35 for C [64], αm = 0.75
[68] for Si, and αm = 0.77, for Ge [69]. Note that the metallicity parameters of

ideal sp3 C Si l-Si isolated atom
fs 1/4 0.30 0.36 0.43 1/2
Nc 4 4 4 6.4 —

Table 3.2: The weight of s orbitals fs and the coordination number Nc among
crystalline carbon, crystalline silicon, and liquid silicon. The calculations are done
using minimal tight-binding Hamiltonians for carbon [64] and silicon [6].
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silicon and germanium are indistinguishable within the above minimal tight-binding
Hamiltonians.

Figure 3.2: (a) A three-dimensional view of the calculated asymmetric dimer on the
Si(001) surface. The bonding ‘σ’ state is drawn as a black rod, while the atomic ‘π’
state at the ‘up’ atom is drawn as a black ball. (b) The schematic picture of the
atomic ‘π’ orbital localized on the ‘up’ atom. The surface dimer atoms are drawn
as filled circle, which lie in the plane of the paper. The subsurface atoms are drawn
as open circle, which do not lie in the present plane.

Figure 3.3: The dimer geometry of the (001) surface by ab initio calculations [70]
[P. Kröger and J. Pollmann, Phys. Rev. Lett. 74, 1155 (1995)]. The valence charge
density is plotted within the (110) plane, in which the dimer bond lies. A black
circle denotes an atom that lies within the (110) plane. A open circle denotes the
projected position of an atom that does not lie in the (110) plane.

Before the discussion of the reconstructed surface, we explain the unreconstructed
(001) surface. If the system is assumed to be in an ideal sp3 bonding system, a surface
atom has two dangling bond states in the ideal sp3 hybridization. We denote the
two states as |h1〉, |h2〉, which are defined as

|h1〉 ≡ 1

2
{|s〉 + |px〉 + |py〉 + |pz〉} (3.12)

|h2〉 ≡ 1

2
{|s〉 − |px〉 − |py〉 + |pz〉} . (3.13)
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The other two sp3 orbitals are parts of two ‘back bonds’ between the surface atoms
and the subsurface atoms. From the two dangling bond states (|h1〉, |h2〉), two atomic
states |α〉, |β〉 can be defined as

|α〉 ≡ |h1〉 + |h2〉√
2

=
|s〉 + |pz〉√

2
(3.14)

|β〉 ≡ |h1〉 − |h2〉√
2

=
|px〉 + py〉√

2
. (3.15)

Figure 3.4 shows the schematic picture of the above two orbitals. The energies of
the orbitals are given as

〈α|H|α〉 =
εs + εp

2
(3.16)

〈β|H|β〉 = εp. (3.17)

Among the mixing states of the two orbitals {|h1〉, |h2〉}, the state |α〉 has the lowest
energy, (εs + εp)/2, due to the maximum weight of s orbital (fs = 1/2). On the
other hand, the state |β〉 has the highest energy, εp, due to the minimum weight of
s orbital (fs = 0). In results, the two electrons in the (sp3) dangling bond states
(|h1〉, |h2〉) should form the lone pair state of |α〉 with an energy gain of

〈α|H|α〉 − εh =
εs + εp

2
− εs + 3εp

4
= −εp − εs

4
. (3.18)

In other words, the unreconstructed surface is stabilized by the dehybridization mech-
anism (fs = 1/4 → 1/2). We will observe this dehybridization mechanism, directly,
as the elementary fracture process in Section 7.2.

Figure 3.4: Schematic pictures of the surface states on the (001) surface of the
diamond structure; (a) |iα〉 and (b) |iβ〉, where i = 1, 2, 3, 4 indicates the atom site,
respectively. The dimerization is also shown schematically.

The surface dimerization originates mainly from the hopping between ‘β’ orbitals
of surface atoms, as in Fig.3.4(b). In the Slater-Koster form, the interaction is
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written in

〈iβ|H|jβ〉 = Vppσ, (3.19)

which can be interpreted as a σ bonding. For the reconstructed surface dimer, a
three-dimensional figure is given in Fig.3.2(a), in which localized states can be de-
fined as generalized Wannier states. One localized state is the ‘σ’ bonding state that
connects the asymmetric dimer. The origin of the bonding is mainly the interac-
tion in Eq. (3.19). Another state is localized on the ‘up’ atom, the dimerized atom
near the vacuum region. This localized state is sometimes called ‘π’ state, because
the direction of its p components is nearly perpendicular to the dimer bond. The
schematic picture of the atomic ‘π’ orbital is shown in Fig.3.2(b). The ‘π’ state
has a larger occupation on the vacuum region, like the ‘α’ state in Fig.3.4. The
corresponding ab initio wave function is seen, for example, in Fig.8(c) of Ref.[71],
as one of the occupied wave function of the surface ground state. Note that, for
the above ‘σ’ and ‘π’ states, the unoccupied states, ‘σ∗’ and ‘π∗ states, can be also
defined. The ‘σ∗’ state is an antibonding state, while the ‘π∗ state is an atomic state
localized on the ‘down’ atom.

We found that such (a)symmetric dimers on the (001) surface can be directly
shown by the universal tight-binding theory. Figure 3.5 shows the calculated ge-
ometry of the (001) surface dimer, in which the tight-binding parameters are tuned
within its universality. The actual calculations are based on the silicon tight-binding
Hamiltonian, but we tune the atomic level difference (εp − εs) so as to control
the metallicity parameter αm. As details, the calculations are done with alter-
nately buckled asymmetric dimers as the initial structure, which will be seen in
Fig.6.2(a) (See Section 6.3). The result shows a symmetric dimer in the carbon
case (αm ≈ 0.35) and shows an asymmetric dimer in the silicon or germanium case
(αm ≈ 0.75 − 0.78). In the latter case, the dimer bond is perpendicular to the
plane that includes the two back bonds on the ‘up’ atom (φ ≈ 90◦). These results
reproduce satisfactory the ab initio results in Fig. 3.3.

For the energetic discussion, an energy quantity is defined as

∆ε
(cov)
i ≡ 〈φi|H|φi〉 −

[
f (i)

s εs + (1 − f (i)
s )εp

]
. (3.20)

A negative value of ∆ε
(cov)
i corresponds to the energy gain of a covalent bonding.

The ‘σ’ state has the gain of ∆ε
(cov)
i ≈ −2eV, which mainly contributes to the dimer-

ization energy (about −2eV) [66]. The ‘π’ state has much smaller ∆ε
(cov)
i , which is

comparable to the energy difference between the asymmetric and symmetric dimers
(the order of 0.1eV) [66]. As shown above, the lowest energy atomic state is ob-
tained by the ‘α’ state, due to the dehybridization mechanism and the orthogonality
from the back bond states. This mechanism is essential to the geometrical feature
of φ ≈ 90◦. In other words, the above geometrical feature is contributed mainly by
the dehybridization mechanism of the ‘π’ state.

On the other hand, the symmetric dimer, as in the carbon case, is characterized
by a π bond, instead of the non-bonding atomic state (|α〉). This can be understood
as the fact that the energy gain of the dehybridization mechanism is relatively small
in carbon, due to the smallness of αm. These features can be explained by the energy
competition between the π bonding state that is stabilized by the transfer energy



40CHAPTER 3. TIGHT-BINDING THEORY AMONG ELEMENTS AND PHASES

and the partially ionic state that is stabilized by the dehybridization mechanism. In
short, the dimer geometry, symmetric or asymmetric, is determined by the energetic
competition between the transfer energy and the energy gain of the dehybridization
mechanism, that is, to gain the energy with increasing the weight of s orbitals. Since
the above energy competition is the property of the Hamiltonian matrix elements, it
may be inherent in all the structures among the group IV elements. Therefore, the
above chemical trend in the (001) surface dimer can be interpreted as one example
of the general picture in which a double bond, σ and π bonds, is easily formed in
the carbon case but is not in the silicon nor germanium cases.

Figure 3.5: The dimer geometry of the (001) surface within the tight-binding Hamil-
tonians. The tilt angle θ and the angle φ are plotted as the function of the metallicity
parameter αm. The angle φ is defined as the angle between the surface dimer and
the plane of the two back bonds of the ‘up’ atom. We tune the value of (εp − εs),
so as to change the metallicity αm continuously.
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3.3 Summary and discussion

Summary

In this chapter, several structures among the group IV elements were systematically
investigated using the universality of the tight-binding Hamiltonian. The univer-
sality of the tight-binding Hamiltonian was introduced, in Section 2.2, from the
ab initio theory. Among the elements, the universality is reduced to the fact that
the tight-binding Hamiltonians for the above materials can be described by a one-
parameter scaling theory, with the metallicity parameter αm. The one-parameter
scaling theory can be interpreted as the energy competition between the bonding
mechanism and the dehybridization mechanism. The former mechanism is governed
by the gain of the transfer energy, while the latter mechanism is governed by the
energy gain due to the increase of the weight of s orbitals. For quantitative discus-
sions, we monitored the weight of s orbitals (fs) for the occupied wave functions.
The following points were discussed;

(I) Within the diamond structure solids (C, Si, Ge, α-Sn), the above one-parameter
scaling theory is reduced to the deviation from the ideal sp3 hybridization. As
results, the sp3-hybridized bond is stable in a lighter element but will be un-
stable in a heavier element, due to the dehybridization mechanism.

(II) The melting of silicon is understood by the dehybridization mechanism.

(III) The (a)symmetric dimer geometry on the (001) surface among C, Si and Ge is
understood by the dehybridization mechanism. Unlike the cases (I) and (II),
this dehybridization mechanism means a local mechanism within the surface
region.

Among these results, we can find that the dehybridization mechanism plays the
essential role in the quantum mechanical freedom of the electronic systems. Note
that we will see, later in this thesis, that the dehybridization mechanism is essential
also in the fracture process of silicon crystal.

Discussion

Hereafter, the topics for future works are discussed. Since the present theory is
limited to properties among the group IV elements, a generalization of the present
work may be a systematic investigation among the compounds in the A(n)B(8−n)

type. Such approaches can be found in many references based on empirical methods.
For example, a phase diagram among this type of compounds is plotted in Ref.[72],
which is reviewed in Fig.8 of Ref.[59]. In the figure, the materials are systematically
classified into the two groups, the group in the fourfold coordination and that in the
sixfold coordination. The classification is carried out by two parameters, that is, (i)
the average of the principal quantum numbers of the elements (n̄ ≡ (nA+nB)/2), and
(ii) the difference of the electronegativity between the elements (∆X ≡ XA −XB).
The above two-parameter theory corresponds to a direct theoretical extension of the
present one-parameter theory among the group IV elements.

The generalization of the theory can be discussed also from the viewpoint of the
energy functional form. The discussions in this chapter are based on the minimal
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tight-binding Hamiltonian form within s and p orbitals. There should be problems
that can not be solved within the present Hamiltonian form. The problems can
be clearly seen, when the present total energy functional is compared with that in
the ab initio one. Now we discuss such problems and several practical solutions
with applications to the Si(001) surface. One problem of the minimal tight-binding
Hamiltonian is the lack of d orbitals as bases. A practical solution for this problem
is the use of the extra ‘s∗’ orbital [61], the spherical average of five d orbitals, as
explained in Section 3.1. As an application [73], the optical spectra of the Si(001)
surface was calculated and compared with experimental results. Another problem is
the lack of the electrostatic energy term. Since the asymmetric dimer of the Si(001)
surface is a partially ionic system, the electrostatic energy is not negligible, though
it was estimated to be not essential [65] for the conclusion of the asymmetric dimer
geometry. A direct correction is given by the on-site Coulomb term in the form of

ECoul ≡ U
atom∑

I

(
nI − n

(0)
I

)
, (3.21)

where nI is the calculated valence electron number of the I-th atom and n
(0)
I is that

in the neutral atom. For example, n
(0)
I = 4 in silicon. U is a given energy parameter.

An application to the Si(001) surface seen in Ref.[74] with U = 3 eV.
Since these generalizations do not cause any fundamental problem in the numer-

ical algorithm, even with the order-N methods, their applications will be possible
future works. Such generalizations, however, increase the computational costs. In
general, it is crucial for large-scale calculations to find a simplest Hamiltonian or
energy functional, so as to reproduce a correct structure. Therefore, we should
continue to develop the theory for constructing simple and practical Hamiltonians.

Apart from the discussion of the computational costs, a fundamental theoretical
improvement should be a self-consistent construction of the tight-binding Hamil-
tonian during the molecular dynamics simulation. In this context, interesting ap-
proaches can be found in the new muffin-tin orbital (MTO) formulations that in-
cludes the total energy calculations. Among the MTO formulations, the one ex-
plained in Section 2.2 is usually called the second-generation MTO formulation.
The new formulations are called the third-generation MTO formulations and one of
them is called ‘NMTO’ method [75, 76, 77, 78]. Here the ‘NMTO’ method gives the
MTO’s with the N -th order in the energy, which is a generalization of the linear
(LMTO) method (N = 1). Based on the new methodology, a bonding muffin-tin
orbital was constructed in silicon crystal and the resultant wave function, Fig. 8 in
Ref. [78], is quite similar to the Wannier state in Fig. 2.2. They called the wave
function ‘Wannier-like’ MTO. As another example, a tight-binding Hamiltonian for
carbon was constructed [79].



Chapter 4

Theories for large-scale
calculations
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4.1 Quantum mechanics with one-body density

matrix

In this section, the quantum mechanical framework is reformulated with the density
matrix, as a foundation of the large-scale electronic structure theory.

Density matrix

As explained in Section 2.4, a common procedure for large-scale calculations is the
construction of the one-body density matrix without the matrix diagonalization.
The one-body density matrix is defined as

ρ ≡
∑

i

fi|φ(eig)
i 〉〈φ(eig)

i | (4.1)

with eigen states {φ(eig)
i } and occupation numbers {fi} (0 ≤ fi ≤ 1). The density

matrix should satisfy the commutation relation

0 = Hρ− ρH (4.2)

and any physical quantity 〈X〉 is expressed as

〈X〉 =
∑

i

fi〈φi|X|φi〉 = Tr[ρX]. (4.3)

The number of electronic states is defined by

N ≡ Tr[ρ]. (4.4)

Hereafter we consider the subspace division of the occupied Hilbert space. The
division is done by decomposing the density matrix ρ into two subspaces of ρA and
(ρ− ρA). The division should be done within the orthogonality

ρA(ρ− ρA) = 0. (4.5)

We will derive a general equation for a subspace ρA within several conditions. Before
the construction of the general equation, we discuss the two cases of the subspace
division; the subspace division with eigen states or with Wannier states.

Case (1) : Subspace division with eigen states

When the eigen states {φ(eig)
i } are classified into two groups A and B, the density

matrix is decomposed into the corresponding two parts

ρ ≡ ρA + ρB (4.6)

where

ρA ≡
A∑
i

fi|φ(eig)
i 〉〈φ(eig)

i |, (4.7)

ρB ≡
B∑
i

fi|φ(eig)
i 〉〈φ(eig)

i | = ρ− ρA. (4.8)
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Here we call ρA and ρB ‘subsystems’. The number of states in the two subsystems
are given, respectively, by

NA ≡ Tr[ρA], (4.9)

NB ≡ Tr[ρB]. (4.10)

The commutation relations

0 = HρA − ρAH, (4.11)

0 = HρB − ρBH. (4.12)

are satisfied for the subsystems. Any physical quantity 〈X〉 is decomposed into

〈X〉 = Tr[ρAX] + Tr[ρBX]. (4.13)

The two subsystems should be under the orthogonal constraint

ρAρB = 0, (4.14)

which is equivalent to the orthogonality relation

〈φi|φj〉 = δij . (4.15)

Here we define a Hamiltonian

H
(A)
map,I ≡ H + 2ηsρB, (4.16)

with an energy parameter ηs. This Hamiltonian satisfies the commutation relation

0 = H
(A)
map,IρA − ρAH

(A)
map,I, (4.17)

due to Eqs. (4.11) and (4.14). We call the Hamiltonian H
(A)
map,I the mapped ‘type I

(one)’ Hamiltonian. We also call the parameter ηs ‘energy-shift parameter’. Equa-
tions (4.17) and (4.9) are in the same form as in Eqs. (4.2) and (4.4). If the ‘B’
subsystem (ρB) is given, the problem for the ‘A’ subsystem (ρA) is mapped to a

standard quantum mechanical problem with the well defined Hamiltonian H
(A)
map,I

and the electron number NA.
With a sufficiently large value of ηs(ηs → ∞), the ‘A’ subsystem is the ground

state of the following energy functional

E
(A)
map,I[ρA] ≡ Tr[H

(A)
map,IρA]

= Tr[HρA] + 2ηsTr[ρAρB]

= Tr[HρA] + 2ηs

A∑
i

B∑
j

fifj |〈φi|φj〉|2. (4.18)

The second term will be zero at its minimum, when the orthogonality (ρAρB = 0) is
satisfied. The second term is similar to the ‘penalty functional’ in Ref. [36]. If the
orthogonality is not satisfied, this energy term gives an increasing positive value as
a ‘penalty’. Therefore, the minimization procedure of E

(A)
map,I with respect to ρA is

mapped to the minimization within the subspace that is orthogonal to the subspace
of ρB. This is the fundamental concept of dividing the occupied Hilbert space.



46 CHAPTER 4. THEORIES FOR LARGE-SCALE CALCULATIONS

Case (2) : Subspace division with Wannier states

Now we turn to the case in which the subsystems are concerned with Wannier
states, not eigen states. As explained in Section 2.3, Wannier states are defined by
the unitary transformation of the occupied eigen states;

|φ(WS)
i 〉 ≡

occ.∑
j

Uij|φ(eig)
j 〉. (4.19)

Here we denote the Wannier states as |φ(WS)
i 〉, which is different from the notations

in Section 2.3. The density matrix is given by

ρ ≡
occ.∑

i

|φ(WS)
i 〉〈φ(WS)

i |. (4.20)

The subsystems are given by

ρA ≡
A(occ.)∑

i

|φ(WS)
i 〉〈φ(WS)

i |, (4.21)

ρB ≡
B(occ.)∑

i

|φ(WS)
i 〉〈φ(WS)

i | ≡ ρ− ρA. (4.22)

The number of states in the two subsystems are given in the forms of Eqs. (4.9) and
(4.10), respectively.

Unlike eigen states, Wannier states do not form a subsystem ρA that commutes
with the Hamiltonian :

0 �= HρA − ρAH. (4.23)

This inequality is shown, when Eq. (4.19) is substituted into Eq. (4.21);

ρA ≡
A(occ.)∑

i

|φ(WS)
i 〉〈φ(WS)

i |

=
A(occ.)∑

i

occ.∑
k

occ.∑
l

UikU
∗
il|φ

(eig)
k 〉〈φ(eig)

l |

=
occ.∑
k

occ.∑
l

δ̃kl|φ(eig)
k 〉〈φ(eig)

l |, (4.24)

where

δ̃kl ≡
A(occ.)∑

i

U∗
ilUik =

A(occ.)∑
i

(
U−1

)
li
Uik. (4.25)

The matrix δ̃kl is not the unit matrix (δ̃kl �= δkl), unless the ‘A’ subsystem contains
all the occupied Wannier states.

From Eq. (4.23), Eq. (4.17) is not satisfied

0 �= H
(A)
map,IρA − ρAH

(A)
map,I. (4.26)

In results, the formulation with H
(A)
map,I is not applicable to the subspace division

with Wannier states, though applicable to the subspace division with eigen states.
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General theory

Now we construct a general formulation that is applicable to both of the above two
cases in the subspace division. We generally divide the system ρ into the subsystems
ρA and ρB that satisfy

ρ = ρA + ρB (4.27)

ρA ρB = 0. (4.28)

The density matrix satisfies the commutation relation

0 = Hρ− ρH. (4.29)

It is useful to write down the following notation and relation

ρ̄ ≡ 1̂ − ρ = 1̂ − ρA − ρB (4.30)

0 = Hρ̄− ρ̄H. (4.31)

Here we propose another mapped Hamiltonian

H
(A)
map,II ≡ H + 2ηsρB − (HρB + ρBH) , (4.32)

which we call the mapped ‘type II (two)’ Hamiltonian. Using the energy shifted
Hamiltonian

Ω ≡ H − ηs, (4.33)

the mapped Hamiltonian is written as

H
(A)
map,II ≡ H − ΩρB − ρBΩ. (4.34)

We will investigate the condition of the following commutation relation

0 = H
(A)
map,IIρA − ρAH

(A)
map,II. (4.35)

As a preparation, we obtain, from Eq. (4.28),

[HρB + ρBH, ρA] = (HρB + ρBH) ρA − ρA (HρB + ρBH)

= ρBHρA − ρAHρB. (4.36)

With the definition in Eq. (4.32), we calculate the commutator

[
H

(A)
map,II, ρA

]
= [H, ρA] + 2ηs [ρB, ρA] − [HρB + ρBH, ρA]

= (HρA − ρAH) + 0 − (ρBHρA − ρAHρB)

= (1 − ρB)HρA − ρAH (1 − ρB)

= (ρ̄+ ρA)HρA − ρAH (ρ̄+ ρA)

= ρ̄HρA − ρAHρ̄

= Hρ̄ρA − ρAρ̄H, (4.37)
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where the second, fourth or last equality is obtained by Eq. (4.36), Eq. (4.30) or
Eq. (4.31), respectively. The resultant quantity in Eq. (4.37), (Hρ̄ρA − ρAρ̄H), will
be zero, if the commutation relations

[H, ρA] = [H, ρ̄] = 0 (4.38)

[ρ̄, ρA] = 0 (4.39)

are satisfied or the orthogonality relation

ρ̄ρA = 0 (4.40)

is satisfied.
In the case of the subspace division with eigen states, in Eqs. (4.7),(4.8), the

operator ρ̄ is given as

ρ̄⇒
∑

i

(1 − fi)|φ(eig)
i 〉〈φ(eig)

i | (4.41)

and Eqs. (4.38),(4.39) are satisfied. Therefore, Eq. (4.35) is satisfied. In this case,
we can directly prove Eq. (4.35), because Eq. (4.12) is satisfied and the commutation
relation with the ‘type II’ mapped Hamiltonian, Eq. (4.35), is reduced to that with
the ‘type I’ Hamiltonian, Eq. (4.17).

In the case of the subspace division with Wannier states, in Eqs. (4.21), (4.22),
the operator ρ̄ is given as

ρ̄⇒
unocc.∑

i

|φ(eig)
i 〉〈φ(eig)

i | (4.42)

and Eq. (4.40) is satisfied. Therefore, Eq. (4.35) is satisfied.
We have proved that Eq. (4.35) is satisfied in the two cases of the subspace

division with eigen states and Wannier states. The corresponding energy functional
to be minimized is given as

E
(A)
map,II[ρA] ≡ Tr[H

(A)
map,IIρA]

= Tr[HρA] + 2ηsTr[ρAρB] − (Tr[ρBHρA] + Tr[ρAHρB]) . (4.43)

The second term is the ‘penalty’ term explained in Eq. (4.18). The expression of
this term with eigen states is seen in Eq. (4.18). The expression with Wannier states
is

2ηsTr[ρAρB] = 2ηs

A(occ.)∑
i

B(occ.)∑
j

|〈φ(WS)
i |φ(WS)

j 〉|2. (4.44)

As in Eq. (4.18), the minimization of this term results in the orthogonality relation
with a sufficiently large value of ηs. When the orthogonality is satisfied (ρAρB = 0),
the second term in Eq. (4.43) will vanish. The third term will also vanish, because
of

Tr[ρBHρA] = Tr[ρAρBH ] = 0. (4.45)

Note that the present theory is applicable to the subspace division with three or
more subsystems ρα, ρβ, ργ · ··;

ρ = ρα + ρβ + ργ · ·· (4.46)

The density matrix of the ‘α’ subsystem ρα is determined by the above formulation
with setting ρA ⇒ ρα and ρB ⇒ ρ− ρα = ρβ + ργ + · · ·.
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Theories in this chapter

In the following sections, we construct several theories for large-scale calculations
using Eq. (4.35) as their foundation. In Section 4.2, the mean-field equation for a
Wannier state is derived from Eq. (4.35). The formulation corresponds to a par-
ticular case of the subspace division in which the ‘A’ subsystem contains only one
Wannier state. The derived mean-field equation will be solved approximately in the
variational and perturbative order-N methods, described in Section 4.3. In Section
4.4, a hybrid scheme is given as a direct application of the energy functional of
Eq. (4.43).
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4.2 Mean-field equation for generalized Wannier

states

Here a mean-field equation for the generalized Wannier states will be derived, using
the formulation developed in the previous section.

Reformulation of generalized Wannier states

As in Section 2.3, the generalized Wannier states are defined as localized one-electron
states that satisfy

Hφi =
N∑

j=1

εijφj, (4.47)

where N is the number of occupied states. The parameters εij are the Lagrange
multipliers for the orthogonality constraints

〈φi|φj〉 = δij (4.48)

and are given as

εji = 〈φi|H|φj〉. (4.49)

Before deriving the mean-field equation, we re-formulate Eqs. (4.47),(4.48), with
the one-body density matrix

ρ ≡
N∑

i=1

|φi〉〈φi|. (4.50)

The density matrix satisfies the commutation relation and the idempotency

ρH = Hρ, (4.51)

ρ2 = ρ. (4.52)

Now it is useful to define Hocc as

ρH = Hρ = Hocc ≡
N∑

j=1

|φ(eig)
j 〉ε(eig)

j 〈φ(eig)
j |, (4.53)

which corresponds to the Hamiltonian projected on the occupied Hilbert space.
With ρ and Hocc, Eqs. (4.47) and (4.48) are rewritten as

(H −Hocc) |φk〉 = 0, (4.54)

(ρ− 1) |φk〉 = 0, (4.55)

respectively. The former equation is derived, when Eq. (4.49) is substituted into
Eq. (4.47) :

0 = H|φi〉 −
N∑

j=1

εij|φj〉

= H|φi〉 −
N∑

j=1

|φj〉〈φj|H|φi〉

= (H − ρH)|φi〉
= (H −Hocc)|φi〉. (4.56)
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Derivation of mean-field equation

In Section 4.1, an equation is given for a subsystem ρ̂A that is constructed from
several selected Wannier states. Here we construct a subsystem which contains only
one Wannier state |φi〉;

ρA ⇒ ρi ≡ |φi〉〈φi| (4.57)

ρB ⇒ ρ̄i ≡
occ.∑

j(�=i)

|φj〉〈φj| = ρ− ρi (4.58)

H
(A)
map,II ⇒ H

(i)
WS ≡ H − Ωρ̄i − ρ̄iΩ (4.59)

or

H
(i)
WS ≡ H + 2ηsρ̄i −Hρ̄i − ρ̄iH. (4.60)

Here some notations are redefined. The commutation relation in Eq. (4.35) is rewrit-
ten as

0 = H
(i)
WSρi − ρiH

(i)
WS. (4.61)

Eq. (4.61) means that the selected Wannier state |φi〉 is an eigen state of the mapped

Hamiltonian H
(i)
WS;

H
(i)
WS|φi〉 = ε

(i)
WS|φi〉, (4.62)

This is the mean-field equation for the Wannier state |φi〉 in the sense that the or-
thogonality constraint with the other Wannier states is included in the Hamiltonian
H

(i)
WS. The selected Wannier state is determined uniquely by Eq. (4.62) and the nor-

malization constraint (〈φi|φi〉 = 1). For the solution of Eq. (4.62), the one-electron
energy is given by

ε
(i)
WS = 〈φi|H(i)

WS|φi〉 = 〈φi|H|φi〉, (4.63)

where the last equality is due to the orthogonality

ρ̄i|φi〉 = 0. (4.64)

Now we prove that the mean-field equation (4.62) is equivalent to Eqs. (4.54)
and (4.55);

0 = H
(i)
WS|φi〉 − ε

(i)
WS|φi〉

= H
(i)
WS|φi〉 − |φi〉〈φi|H|φi〉

=
(
H

(i)
WS − ρiH

)
|φi〉

= 2 (H −Hocc) |φi〉 + 2ηs(ρ− 1)|φi〉, (4.65)

where the last equality is obtained by the operator equivalence

H
(i)
WS − ρiH = H + 2ηsρ̄i −Hρ̄i − ρ̄iH − ρiH

= H + 2ηs (ρ− ρi) −H (ρ− ρi) − ρ̄iH − ρiH

= H + 2ηs (ρ− ρi) −H (ρ− ρi) − ρH

= (H +Hρi − 2ρH) + 2ηs (ρ− ρi)

= (H +Hρi − 2Hocc) + 2ηs (ρ− ρi) (4.66)
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and the fact

ρi|φi〉 = |φi〉〈φi|φi〉 = |φi〉. (4.67)

In short, a Wannier state |φi〉 is not an eigen state of the original Hamiltonian

H but an eigen state of the above mean-field Hamiltonian H
(i)
WS. It should be noted

that Eq. (4.62) is satisfied by Eqs. (4.54),(4.55) with an arbitrary choice of ηs. So
as to obtain the correct ground state with Eq. (4.62), the energy shift parameter ηs

should be chosen as a sufficiently large value, which will be discussed below.

Another derivation of mean-field equation

The above mean-field equation (4.62) can be also derived in an alternative way [27];
The energy functional in Eq. (2.89) is rewritten, with the density matrix, as

EO(N) =
N∑
i,j

(2δij − 〈φj|φi〉)〈φi|Ω|φj〉 (4.68)

= Tr[(2ρ− ρ2)Ω], (4.69)

where we denote the functional EO(N), instead of the notation E
(II)
elec used in Section

2.5. The variation with respect to one Wannier state |φi〉 is given by

0 =
δEO(N)

δ〈φi|
= (2Ω − ρΩ − Ωρ) |φi〉
= (2H − ρH −Hρ) |φi〉 + 2ηs (ρ− 1) |φi〉
= 2 (H −Hocc) |φi〉 + 2ηs(ρ− 1)|φi〉, (4.70)

which is equivalent to Eq. (4.65).

Analysis of mean-field Hamiltonian

Figure 4.1 shows an example of the density of state (DOS) of H and H
(i)
WS for silicon

crystal [27]. Here the label i of a Wannier state |φi〉 denote the bond site as its
localization center. The DOS profile of the original Hamiltonian is decomposed
into two parts, that is, the DOS profile of the valence band Dval(ε) and that of the
conduction band Dcond(ε)

D(ε) = Dval(ε) +Dcond(ε). (4.71)

For the mean-field Hamiltonian H
(i)
WS, the DOS profile D

(i)
WS(ε) is decomposed into

three parts;

D
(i)
WS(ε) = δ(ε− ε

(i)
WS) +Dcond(ε) +Dhigh(ε). (4.72)

The first term is the isolated level shown in the figure. The second term is the same
DOS profile as the conduction band in H . The last term is the high energy band
located at ε ≥ 2η ≈ 272 eV. Hereafter we explain the three parts; The first term
of Eq. (4.72) is the non-degenerate lowest eigen level of H

(i)
WS of which eigen state
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Figure 4.1: The DOS of Hamiltonians H and H
(k)
WS for the Si case with 512 atoms

in the periodic cell [27]. The isolated level εWannierstate is broadened by a Gaussian
with a width 0.01eV and all the other levels are by that with a width of 0.1eV. The
two parallel arrows in H indicate ε

(eig)
N and ε

(eig)
N+1.

is the correct Wannier state |φi〉. The value of ε
(i)
WS is the weighted center of the

valence band, due to the following reason; Since all the bond sites are symmetrically
equivalent in the diamond structure, the one-electron energy of the corresponding
Wannier states should have a common value (ε

(i)
WS = εWS). Though the present

calculation is done within the tight-binding formulation, the one-electron energy of
Wannier state εWS is well defined, even within ab initio calculations, as the weighted
band center of the valence band. On the other hand, the band structure energy is
uniquely determined as the sum of the one-electron energies of the eigen states and
the Wannier states. From the above requirement, the one-electron energy of the
present Wannier state should be the weighted center of the valence band

ε
(i)
WS = εWS =

1

N

N∑
j

ε
(eig)
j =

∫
Dval(ε)εdε∫
Dval(ε)dε

. (4.73)

The second term of Eq. (4.72) is contributed by the eigen states in the conduction

band of H , (φ
(eig)
i , N +1 ≤ i ≤ 2N). They are also the eigen states of H

(k)
WS with the

same eigen energies

H
(k)
WS|φ

(eig)
i 〉 = H|φ(eig)

i 〉 = ε
(eig)
i |φ(eig)

i 〉. (4.74)

The third term of Eq. (4.72) is contributed by all the other (N−1) occupied Wannier
states ({φj}; j = 1, 2...., i − 1, i + 1, ..., N). Such Wannier states are equivalent to
|φi〉 but their localization centers are different from the i-th bond site. They are not
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eigen states of H nor H
(k)
WS but satisfy

ρ|φj〉 = |φj〉 (4.75)

and

〈φj|H(i)
WS|φl〉 = 2η − 〈φj|Hocc|φl〉, j, l �= i. (4.76)

Due to Eq. (4.76), the corresponding band Dhigh(ε) has the property

Dhigh(ε) ≈ Dval(2η − ε) (4.77)

and is located at ε ≥ 2η − εN ≈ 272 eV. Due to the large energy shift of Dhigh(ε),
the Hilbert space of the other Wannier states ({φj}; j = 1, 2...., i − 1, i + 1, ..., N)
is automatically excluded in the variational freedom of φi, which results in the
orthogonality constraint between the occupied Wannier states (〈φi|φj〉 = δij).

Locality as virtual impurity state

The locality of the Wannier state can be quantitatively discussed with the mean-
field equation, as follows; Since the DOS profile of H

(i)
WS has one localized eigen level

and a conduction band, the locality of the Wannier state φi is mapped formally to
a virtual impurity state. The ionization energy is defined, also formally, as

∆
(i)
WS ≡ ε

(eig)
N+1 − ε

(i)
WS (4.78)

Using the general uncertainty relation in the quantum mechanics, a length scale of
the spatial spread is defined as

ξ
(i)
WS ≡ h̄√

2me∆
(i)
WS

, (4.79)

where me(≡ 1a.u.) is the mass of electron. The above length should characterize
the locality of φi as a virtual impurity state.

Here we explain that the length ξ
(i)
WS explains quantitatively the locality of the

corresponding wave function |φi〉. Before the practical silicon case, a simpler tight-
binding Hamiltonian in the diamond structure is defined as follows:

H0 =
N∑

i=1

(|bi〉εb〈bi| + |ai〉εa〈ai|) . (4.80)

Here |bi〉 or |ai〉 is the ideally sp3 bonding or antibonding orbitals at the i-th bond
site. The wave function |bi〉 and |ai〉 are completely localized on a pair of atoms
on thei-th bond site. The energy difference between the bonding and antibond-
ing orbitals is set to be εa − εb = 8.25eV, according to the present tight-binding
Hamiltonian of silicon , Since the Wannier state is reduced to the bonding or-
bital (|φi〉 ⇒ |bi〉) and the lowest occupied level is that of the antibonding state

(ε
(eig)
N+1 ⇒ εa) , the ionization energy as the virtual impurity state is reduced to
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∆
(i)
WS ⇒ εa − εb = 8.25eV. Due to Eq. (4.79), the length scale for the spatial spread

is calculated as

ξb ≡ h̄√
2me(εa − εb)

= 0.29 d0, (4.81)

where d0 is the equilibrium bond length (d0 ≡ 2.4 Å). The value of ξb = 0.29d0 is
consistent to the fact that the spread of a bonding orbital should be less than or
about equal to the bond length d0. Now we turn to the practical silicon case, in
which ∆WS = 6.49eV is obtained from Fig. 4.1. Using ξb as a reference, Eq. (4.79)
give the value

ξ
(i)
WS ≡ h̄√

2me∆
(i)
WS

= ξb

√√√√εa − εb

∆
(i)
WS

= 1.13 ξb. (4.82)

On the other hand, the spatial spread of the Wannier state can be directly estimated
from the calculated wave function as

r̄
(i)
WS ≡

√
〈φi|(r̂ − ri)2|φi〉, (4.83)

where ri ≡ 〈φi|r̂|φi〉 is the localization center of the Wannier state. The actual
values are calculated with the assumption that all atomic orbitals are localized at
the atomic position. For a bonding orbital |bi〉, this length is the half of the bond
length (r̄b ≡ d0/2) from its definition. For the practical Wannier state φi, we
obtained

r̄
(i)
WS = 1.2 r̄b. (4.84)

Here we can find that the ratio r̄
(i)
WS/r̄b = 1.2 agrees with the corresponding value

ξ
(i)
WS/ξb = 1.13 estimated from the uncertainty relation. Since the two ratios are

calculated from different quantities, the agreement between them means that the
locality of Wannier states is explained quantitatively as a virtual impurity state. A
quantitative interpretation of the above results is that the Wannier state |φi〉 has
a slightly wider spatial spread than that of the bonding orbital |bi〉, due to the
hoppings between bond sites.

It should be emphasized that the present discussion is based on an exact equa-
tion, Eq. (4.62). The locality of the Wannier state is derived from the eigen value

distribution of the Hamiltonian H
(i)
WS, which is independent on any explicit localiza-

tion constraint.
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4.3 Variational and perturbative order-N meth-

ods

The formulation in Section 4.2 gives a mean-field equation (4.62). The formulation
is summarized here; The mean-field equation is given as

H
(i)
WS|φi〉 = ε

(i)
WS|φi〉 (4.85)

where

Ω ≡ H − ηs (4.86)

ρ̄i ≡
occ.∑

j(�=i)

|φj〉〈φj| (4.87)

H
(i)
WS ≡ H − Ωρ̄i − ρ̄iΩ (4.88)

The corresponding energy functional to be minimized is given, by Eq. (4.69), as

EO(N) = Tr[(2ρ− ρ2)(H − ηs)] (4.89)

with the density matrix

ρ =
occ.∑

i

|φj〉〈φi|. (4.90)

The mean-field equation (4.85) directly gives practical order-N algorithms within
variational or perturbative procedures.

Variational order-N method

From the mean-field equation, a variational procedure is constructed so as to gen-
erate approximate Wannier states. We call the above method ‘variational order-N
method’ in this thesis. As the practical procedure, Eq.(4.85) is solved iteratively
under the given localization constraint on each Wannier state

{φi} → {H(i)
WS} → {φi} → {H(i)

WS} → · · · (4.91)

If the localization constraint is relaxed, the calculation will be exact. Even with a
given localization constraint, the variational order-N method has several choices for
constructing the iterative algorithm, which will be discussed in Section 5.2.

Here we discuss the localization constraint in our program code. For each Wan-
nier state φi, its localization center r̄i

r̄i ≡ 〈φi|r̂|φi〉 (4.92)

is calculated. The localization region for the i-th Wannier state is defined as the
atoms within the cutoff radius from the localization center;

|RJ − r̄i| < r
(cut)
i , (4.93)
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where RJ denotes the position of the J-th atom and r
(cut)
i is the given cutoff radius.

Since the localization center r̄i is automatically updated by Eq.(4.92) during the

molecular dynamics, we should control only the cutoff radii {r(cut)
i }. In our program

code, the cutoff radius r
(cut)
i can be dynamically controlled for each Wannier state

during dynamical simulations, which will be discussed in Section 7.4.

A technical comment is added: Though the calculations in this thesis are done
by the spherical cutoff, there might be more sophisticated method to define the
localization region. For example, Wannier states at surface may have a wider spatial
spread within the surface plane than that within the direction perpendicular to
the surface, which is a suitable situation for a non-spherical localization region for
Wannier states. Such a non-spherical localization constraint is one of future works.

Perturbative order-N method

Using the mean field equation (4.62), we can also construct a perturbative method to
generate Wannier states. This method corresponds to a non-self-consistent solution
of the mean field equation and we call the method ‘perturbative order-N method’.
The silicon crystal case is picked out, for example. As discussed in the previous
section, the Wannier state of silicon crystal |φi〉 is quite similar to the ideal sp3

bonding orbital (|φi〉 ≈ |bi〉) and the Hamiltonian is quite similar to the simpler one
in Eq. (4.80) (H ≈ H0). Based on the above facts, a perturbative solution of the
mean-field equation (4.62) is given by

|φ(PT)
i 〉 = C(0)|bi〉 +

∑
j(�=i)

C(j)|aj〉 (4.94)

The coefficient C(j) is given by the standard first-order perturbation

C(j)

C(0)
=

〈aj|H|bi〉
εb − εa

. (4.95)

The coefficient C(0) is determined by the normalization (〈φ(PT)
i |φ(PT)

i 〉 = 1). In
the perturbation terms, bonding orbitals without the i-th bond site ( {|bj〉}j �=i)
are ‘excluded’, because they are in the high-energy band in Fig.4.1. In a physical
sense, a bonding orbital |bj〉 is occupied by the Wannier state |φj〉, whose center
is located on the bond site, and can not be occupied by the other Wannier state
|φi〉 (i �= j). For the justification of the perturbative treatment, the contribution of
the unperturbed term (|C(0)|2) should be almost one. In the present case of bulk
silicon, the resultant value is |C(0)|2 = 0.94. Equations (4.94) and (4.95) are the
foundation of the perturbative ‘order-N’ method. The details of the formulation
and the analysis of the resultant wave functions are explained in Section 5.5 for
silicon crystal and other diamond structure solids.

It is generally important that the formulation of Eqs. (4.94) and (4.95) does
not include any explicit localization constraint on the wave functions. The locality
of the wave function |φ(PT)

i 〉 is given directly by the short-range property of the
Hamiltonian H .
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In the molecular dynamics simulations, we should calculate the total electronic
energy Eelec and the corresponding force on each atom FI

Eelec =
occ.∑

i

〈φ(PT)
i |H|φ(PT)

i 〉 (4.96)

F
(elec)
I ≡ −∂Eelec

∂RI

= −
∑

i

〈φ(PT)
i | ∂H

∂RI

|φ(PT)
i 〉, (4.97)

where RI is the position of the I-th atom.
Unlike the variational method, the perturbative order-N method does not contain

any parameter to be controlled in dynamical simulations. Its technical details is
limited to those in computational techniques, such as saving the required memory
size, which will be discussed in Section 5.1. We will also discuss the parallelization of
the perturbative order-N method in Section 5.4. Since the above procedures between
different Wannier states are completely independent, the parallel computations can
be done with respect to Wannier states.

Example in silicon crystal

As an example, silicon crystal is calculated within the perturbative order-N method
using a standard work station. Examples with the variational order-N method will
be shown later in this thesis. As explained in Chapter 1, Fig. 1.1 shows the CPU
time per one MD step as the function of the number of atoms. The resultant CPU
time shows a clear order-N property among 102 − 106 atoms. In the program code,
Eqs. (4.94), (4.95), (4.96), (4.97) are done explicitly, which dominates the total
CPU time. We will discuss this point, in Section 5.4, with the parallelization of the
program code. The electronic energy per one Wannier state εWS = 〈φi|H|φi〉 was
calculated and its deviation from the correct value was about 0.054 eV. The deviation
corresponds to 1 % of the energy (εWS) and to 10 % of the energy difference from
that of the ideal sp3 bonding orbital (εb − εWS). Here we can see that the present
tight-binding Hamiltonian is a short-range operator and the value of its matrix
element 〈φi|H|φi〉 is determined dominantly within a quite local area. Note that we
will discuss, in Section 5.5, how the perturbative order-N method reproduces the
energy systematically among the diamond structure solids.

The equilibrium lattice constant and elastic constants are also calculated using
the perturbative Wannier states. The calculated lattice constant has an error of 2 %
from the correct one [80]. The elastic constants are calculated within the deformed
crystals [80]. Since the elastic constants are given by the second order perturbation
of energy with respect to small deformations, they are expected to be reproduced
by the first-order perturbation of the wave functions. Table 4.1 shows the results
of the bulk modulus (B) and the shear moduli (C11 − C12 and C44). The results
of the present work are compared with those in the exact diagonalization [6], an
ab initio calculation [81], a classical model [82], and experiments. The error of the
present order-N method from the exact diagonalization result is also shown inside
the bracket, which is less than 10 %. The above discrepancy between the order-N
method and the exact tight-binding calculation is not important, when these values
are compared with ab initio or experimental values. Here a relatively large error is
found in C44, because the corresponding shear mode is inherently complicated due to
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a rehybridization and an internal strain [81, 62]. A theoretical quantity C
(0)
44 is often

defined as the shear modulus without relaxing the internal strain. See Appendix
B.2 for details. The value of C

(0)
44 is larger than that of C44 from its definition

(C
(0)
44 > C44). The calculated values of C

(0)
44 are 188.3, 198.5 or 111.0 GPa with the

present work [80], the exact tight-binding calculation [6] or the ab initio calculation
[81], respectively. Since a large discrepancy is found between the results of the
exact tight-binding calculation and the ab initio calculation, the methodological
problem originates mainly from the present tight-binding Hamiltonian, not from the
perturbative order-N method. From above all, we can conclude that the perturbative
order-N method gives satisfactory results of the elastic constants, at least, within
the present tight-binding Hamiltonian.

Discussion

Here several discussions are made. The variational order-N method and the pertur-
bative order-N method are based on the same mean-field equation. In the compu-
tational algorithm, the perturbative method is much simpler than the variational
method, because the perturbative method does not contain a self-consistent loop.
Now it may be interesting to derive classical models by further simplification of the
perturbative method. Since the perturbative formulation gives the Wannier state
{φ(PT)

i } as explicit functions of the atomic coordinates {RI}, the resultant total
energy in Eq. (4.96) gives a classical model, in the sense that the force on atoms

∂Eelec

∂RI

(4.98)

can be calculated analytically. Though the first order perturbation is the simplest
treatment within quantum mechanics, the resultant energy functional is still much
more complicated than standard classical models with two- or three-body potentials.
On the other hand, several physical quantities, such as elastic constants, can be well
reproduced by simple classical models (See Appendix B.2). The above fact implies
that further simplification of the present energy functional may be possible, if its
applicability is limited to specific purposes. Such a derivation of classical models
may be one of future works.

Present work (error) Exact TB ab initio classical Exp.
B 82.3 (6.05 %) 87.6 93.0 101.4 97.8

C11 - C12 92.3 (1.70 %) 93.9 98.0 75.0 101.2
C44 97.9 (10.0 %) 89.0 85.0 56.4 79.6

Table 4.1: The elastic constants in the unit of GPa. The results are calculated by
the following methods; (i) the present work with perturbative Wannier states [80],
(ii) the exact diagonalization of the tight-binding Hamiltonian [6], (iii) the ab initio
(LDA) calculation [81], (iv) the Stilinger-Weber potential [82], a standard classical
model. The experimental values are also plotted. The present experimental values
are from Ref. [6]. In the bracket of the present work shows the error from the value
of the exact diagonalization.
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4.4 Hybrid scheme by dividing Hilbert space

Based on the formulation in Section 4.1, another novel methodology, ‘hybrid scheme’,
is given in this section. The essence of the present hybrid scheme is to divide the
one-body density matrix into two parts, as in Section 4.1,

ρ = ρA + ρB (4.99)

and calculate ρA and ρB by different methods. This method is important especially
in inhomogeneous systems.

In this thesis, practical hybrid schemes are done using the subspace division with
Wannier states. The density matrix is constructed from the occupied Wannier states
φi as

ρ ≡
occ.∑

i

|φi〉〈φi|. (4.100)

Now the occupied Wannier states {φi} are decomposed into two groups ‘A’ and ‘B’.
The ‘subsystems’ ρA or ρB is constructed from the members of the group ‘A’ or ‘B’,
respectively;

ρA ≡
A(occ.)∑

i

|φi〉〈φi|, (4.101)

ρB ≡
B(occ.)∑

i

|φi〉〈φi|. (4.102)

It should be noted that, though the subsystems ρA and ρB are formally given as the
sums of the Wannier states, it is not necessary to calculate all the Wannier states.
What we should calculate is the partial density matrices ρA and ρB. In the example
shown in this section, ρB will be explicitly constructed from the Wannier states, but
ρA will not.

Practical procedures

We will demonstrate the formulation with a silicon crystal with surfaces. In this case,
the inhomogeneous property stems from the difference of electronic states between
the bulk and surface regions. In the bulk region, the Wannier states are characterized
by sp3 hybridized bonds and can be described by the perturbative order-N method,
as explained in Section 4.3. These Wannier states {φi} in the bulk region are chosen
as the members of the ‘B’ subsystem by Eq. (4.102). The other Wannier states
belong to the ‘A’ subsystem. The subsystem ρA will should be given with the exact
diagonalization method of the mapped Hamiltonian H (A)

map in Eq. (4.32). Since the
perturbative order-N methods is a non-selfconsistent method, the algorithm of the
hybrid scheme is a ‘one-way’ algorithm; We first generate ρB using the perturbative
order-N method, without ρA, and then we determine ρA with the given ρB. Such
‘one-way’ algorithm is of great advantage in saving the computational costs.

The present demonstration is done with a silicon crystal with an unreconstructed
(001) surface. Due to the unreconstructed surface, the system is unstable and the
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electronic energy gap almost vanishes (0.025 eV), as explained below. Therefore,
the present example is one of the severest tests for the present methodology.

The actual sample is a slab with 16 atomic layers. Each atomic layers contains
64 atoms. The total number of atoms is 8 × 8 × 16 = 1024 in the periodic cell.
The z coordinate is written in the length unit of the interval between atomic layers;
that is, the atoms lie in z = 0, 1, 2....15. The surface atoms are localized as z = 0
and have dangling bonds. In a physical sense, the value of z corresponds to the
depth from the surface. The atoms on the opposite boundary surface of the sample
(z = 15) do not have any dangling bond and is terminated by the Wannier states
in the ideally sp3 bonding orbitals. The opposite surface does not form a surface
band and will be ignored in the below physical discussions. The electronic system
in the calculation code contains N ≡ 1984 occupied states without the terminated
Wannier states. The corresponding number of electrons is 2N with the para-spin
factor (two). The center of Wannier state is denoted as

zi ≡ 〈φ(PT)
i |z|φ(PT)

i 〉. (4.103)

Except the surface states, Wannier states shows bonding characters in the dia-
mond structure. Each bond is placed among successive two layers and the center
zi of the corresponding Wannier state is located at half integers in the present unit
(zi = 0.5, 1.5, 2.5...., 14.5). The subsystem ‘B’ is constructed from the perturbative
Wannier states whose centers are located at atomic layers deeper than the z(c)-th
layer (zi > z(c))

ρB ≡
zi>z(c)∑

i

|φ(PT)
i 〉〈φ(PT)

i |. (4.104)

The value of z(c) = 8 is chosen. The other electronic states that correspond to
Wannier states near the surface regions (zi < z(c)), belong to the ‘A’ subsystem.
The divided subsystems ‘A’ and ‘B’ contain NA = 1088 and NB = N − NA = 896
electronic states, respectively. The energy shift parameter is chosen as 2ηs = 1a.u.
(about 27.2 eV). With the above preparations, the mapped Hamiltonian for the ‘A’
subsystem (ρA) is well defined as

H(A)
map ≡ H + 2ηsρB − (HρB + ρBH) . (4.105)

The Hamiltonian H(A)
map corresponds to H

(A)
map,II in Section 4.1, that is, here we drop

the suffix ‘II’.
As an additional approximation, we ignore the third term (HρB + ρBH) in the

above formulation, due to the following reason; In the bulk region, the present
(perturbative) Wannier state |φi〉 is quite similar to the ideal sp3 bonding state |bi〉
at one bond sites (|φi〉 ≈ |bi〉), The Hamiltonian H , on the other hand, is quite
similar to that in Eq. (4.80) (H ≈ H0), whose eigen states are |bi〉 (H0|bi〉 = εb|bi〉).
Within the above approximation,we obtain

HρB + ρBH ≈ 2εbρB. (4.106)

and Eq.(4.105) is reduced to

H(A)
map ≈ H + 2(ηs − εb)ρB. (4.107)
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When ηs is redefined, Eq. (4.107) is equivalent to Eq. (4.105) without the third
term. It is noteworthy that in the context of Section 4.1, the above simplification
means the reduction of the ‘type II’ Hamiltonian, given in Eq. (4.32), into the ‘type
I’ Hamiltonian, given in Eq. (4.16). Off course, the above simplification is not
necessary, in principle. In other words, we will demonstrate a simplest formulation
of the hybrid scheme.

Figure 4.2: The density of states (DOS) in the hybrid method. Lower panel : DOS
of the original Hamiltonian H . Upper panel : DOS of the mapped Hamiltonian
H(A)

map. The system is a silicon crystal with an unreconstructed surface.

Result

Figure 4.2 shows the result of the hybrid scheme. Among the DOS profiles in the
present section, the energy origin (ε = 0) is shifted downward by 0.642 eV for the eye
guide. The lower panel of Fig. 4.2 shows the DOS profile of the original Hamiltonian
H . The highest occupied level (εHO) and the lowest unoccupied level (εLU) are given
as εHO = −0.0236 eV and εLU = 0.00048 eV, respectively. As already explained, the
calculated electronic energy gap, εLU − εHO ≈ 0.025 eV, is much smaller than that
of the bulk system (1.2 eV), due to the presence of the unreconstructed surface.
The upper panel of Fig. 4.2 shows the DOS profile of the ‘A’ subsystem (H (A)

map),
which is well decomposed by three bands: The lower band (ε < 0) is that of ρA

with NA states. The exact value of its band top is ε
(A)
top ≡ −0.0539 eV. The middle

band (0eV < ε < 7eV) is the unoccupied band. The exact value of its band bottom
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is ε
(U)
bot ≡ −0.00015 eV . The upper band (13eV < ε < 25eV) is that of ρB with

NB states. From above observations, the Hilbert space of the ‘B’ subsystem (ρB)
is separated in the eigen value distributions of HA, since the corresponding band is
shifted in the energy domain near the value of 2ηs = 27.2eV. As details, two points
are also discussed; First, the bottom of the unoccupied band in H (εLU) is equal

to the bottom of the middle band in HA (ε
(U)
bot) with a negligible error (less than 1

meV). This property will be exactly satisfied, if ρB is constructed from the exact

Wannier states. Second, the top of the lower band in HA (ε
(A)
top = −0.054 eV) is

close to the top of the occupied band in H (εHO = −0.024 eV). This property is
expected, though not exactly satisfied, if ρB is constructed from the exact Wannier
states, because the top of the occupied band in H should be contributed dominantly
by the Wannier states near the surface regions. The above two points imply that
the present hybrid scheme can describe the surface band, which is essential to the
reconstruction processes.

Eigen value x Eigen value x

Figure 4.3: The density of states (DOS) of the partial density matrix (ρB) is plotted
with different ranges in (a) and (b). Note that the present DOS profile is given
by the Gaussian broadening of each eigenvalues x with the broadening width of
∆x = 0.01

Fig. 4.3 shows the DOS of the density matrix ρB. If the density matrix ρB

is constructed by exact orthogonal wave functions, the density matrix will show
the exact idempotency (ρ2

B = ρB) and their eigen values x will be one for the NB

states that contribute ρB and zero for the other states. The calculated DOS using
the perturbative Wannier states deviates from the exact idempotency but we can
observe that the eigen values are well separated by the region of x ≈ 0 and x ≈ 1.
The band of x ≈ 1 contains NB states. From the above facts, the present density
matrix ρB shows a satisfactory property in the approximate idempotency. Here we
discuss the details of the observed DOS profile in Fig. 4.3(a). The DOS profile can
be decomposed by three parts; Two of them are the bands near the region of x ≈ 0
and x ≈ 1 that have finite band widths. The other one is the ideal delta function
at x = 0, which is clearly seen on Fig. 4.3 (b). The bands with finite band widths
originated from the fact that the perturbative Wannier states deviates from the exact
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orthogonality (〈φ(PT)
i |φ(PT)

j 〉 �= δi). The ideal delta function at x = 0 originates from
the fact that the perturbative Wannier states in the ‘B’ subsystem are located only
within the region of zi > z(c). The resultant density matrix ρB has its spatial spread
within the region of z ≥ z(B) ≡ z(c) − 2, because each perturbative Wannier state
has its spatial spread within the second nearest neighbor bond sites. Within the
region of z < z(B), layers near the surface, the corresponding matrix elements in
ρB are exactly zero both in the diagonal and off-diagonal elements, which forms the
ideal delta functions on the DOS.

      

      

      

      

Figure 4.4: The averaged valence charge per atom with the function of the depth
from the surface (z) in the unit of the atomic layer. The atoms at z = 0 correspond
to the surface atoms.

Discussion

The real space picture of the present hybrid scheme is discussed. In Fig. 4.4(a),
the averaged valence charge per atom n(z) is plotted as the function of the atomic
coordinate z in the length unit of the interval between atomic layers. The result
with the standard diagonalization method is plotted as nexact(z), which shows small
deviations from the neutrality (n = 4) near the surface regions. Note that the
surface atoms in the present sample are in the ideal crystalline geometry and will be
reconstructed to form asymmetric dimers of partially ionic atoms, as discussed later
in this thesis. The charge of the subsystems are also plotted as nA(z) and nB(z) and
are defined by the diagonal elements of the density matrices ρA and ρB, respectively.
In Fig. 4.4(a), we can observe that the total charge in the hybrid scheme (nA + nB)
reproduces well that of the exact calculations (nexact). The maximum error is only 1
% at z = z(c) = 8 and the error at the surface atom (z = 0) is less than 0.2 %. The
charge distributions of the two subsystems are overlapped in real space. For example,
the charge at z = z(c) ≡ 8, is contributed by nA and nB with almost same weights.
This can be understood within the Wannier state picture as follows; Each Wannier
state, except the surface one, is quite similar to an sp3 bonding state on a bond site.
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A Wannier state whose bond site is placed between the 8-th and 9-th atomic layers
belongs to the ‘B’ subsystem and has almost the half of the weight on the 8-th atomic
layer. On the other hand, a Wannier state whose bond site is placed between the
7-th and 8-th atomic layers belongs to the ‘A’ subsystem and has almost the half of
the weight on the 8-th atomic layer. Figure 4.4(b) shows that the charge distribution
of the ‘A’ subsystem nA(z) decays quickly at z > 8, which corresponds to the ‘tail’ of
the Wannier states that belong to the ‘A’ subsystem. Here we note the following two
issues; (i) The present hybrid scheme does not require any explicit constraint on the
charge distribution n(z) for its local charge neutrality (n(z) ≈ 4) in the bulk regions.
(ii) Though the above explanations are done within the Wannier state picture, the
‘A’ subsystem (ρA) is constructed from eigen states in the computational code. The
present hybrid scheme does not require any explicit constraint on eigen states so
as to decay in the region of z > 8. The above two properties are fulfilled only by
the orthogonality between the two subsystems. In results, the two subsystems are
overlapped in real space but orthogonal in the Hilbert space. This is the reason why
we call the present method as ‘division in Hilbert space’.

Hybrid scheme between order-N methods

Since the present hybrid scheme gives a well-defined mapped Hamiltonian H (A)
map, we

can use, in principle, any quantum mechanical method for calculating the partial
density matrix ρA. So far the hybrid scheme is done by the combination of the
exact diagonalization method and the perturbative order-N method. In Chapter 7,
several fracture simulations are done in the hybrid scheme of the variational order-N
method and the perturbative order-N method. Another example is seen in Fig. 4.5
[52], in which we use the hybrid scheme of the recursion method (See Section 2.5)
and the perturbative order-N method. The result in Fig. 4.5 should be compared
with that by the exact diagonalization method, in the upper panel of Fig. 4.2.
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Figure 4.5: The density of states (DOS) in the hybrid method [52]. DOS for HA
map

is calculated by the recursion method with the recursion order of NR = 2, 8, 20. The
system is a silicon crystal with an unreconstructed surface. The exact diagonaliza-
tion result is given in the upper panel of Fig. 4.2 for the same mapped Hamiltonian
H(A)

map.
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4.5 Summary and future aspects

In this chapter, we constructed the theories of large-scale electronic structure calcu-
lations. The overview is shown in Fig. 4.6.

We derived a general equation of the partial density matrix, Eq. (4.35), in the
form of a commutation relation (Section 4.1). As a specific case of the above equa-
tion, we derived the mean-field equation, Eq. (4.62) , of the generalized Wannier
states (Section 4.2). These are the exact equations. As practical order-N methods,
the variational and perturbative methods were constructed as approximate solutions
of the above mean-field equation (Section 4.3). From Eq. (4.35), we also constructed
the hybrid scheme by dividing the occupied Hilbert space. In the hybrid scheme,
the electron system is divided into several subsystems in the Hilbert space and the
subsystems are solved by different methods (Section 4.4). We prepared the program
code of the hybrid scheme between the following methods; (i) the exact diagonal-
ization method and the perturbative order-N method, (ii) the variational order-N
method and the perturbative order-N method, (iii) the recursion method and the
perturbative order-N method. The cases (i) and (iii) were demonstrated in Section
4.4. The case (ii) will be used in the practical large-scale fracture simulations in
Chapter 7.

For the above theories, several details and applications will be discussed in the
next chapter (Chapter 5). Particularly, the perturbative order-N method will be
parallelized in Section 5.4. In Section 7.4, we will discuss several technical details
related to the dynamical simulations.

Hereafter we discuss the future aspects of the theories. Since all the theories
are well defined in quantum mechanics, the future aspect should be discussed in
practical points;

(I) The first point is the parallelization of the variational order-N method. This
point will be discussed in Section 7.7.

(II) The second point is the further application of the perturbative order-N method.
In this thesis, the application is limited to the sp3-hybridized bond. Since the
mean-field equation of the Wannier state is a general equation, the perturba-
tive Wannier states can be always constructed, if reliable unperturbed wave
functions are prepared.

(III) The third point is the further application of the hybrid scheme. In the present
thesis, the practical large-scale application is done by the hybrid scheme be-
tween the variational and perturbative order-N methods. Since the hybrid
scheme is based on a general division principle in the Hilbert space, appli-
cations with other methods are straightforward. Now we are developing the
program code of the recursion method, which was tested in a hybrid scheme
(See Fig. 4.5).

It should be noted that, since the perturbative or variational order-N method is
based on the Wannier state, their success is limited to covalent bonding materials.
The recursion method, on the other hand, is not based on the generalized Wannier
states and will be applied, especially, to metals.
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Figure 4.6: Overview of the present theories for large-scale electronic structure cal-
culations.
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5.1 Perturbative order-N method

In this section, we discuss several technical details of our program code. Within
the perturbative order-N method, the required operation number to generate the
Wannier state is uniquely determined. In the practical computations, however, the
optimal program code may differ among the hardware environments.

Limitation in memory size

A crucial problem is the size limitation of the built-in memory. For example, the
present calculation is done by a standard work station with 2 GB built-in memory.
In the perturbative order-N method, the calculation of the non-zero Hamiltonian
matrix elements ({HαIβJ}) is inevitable. For a system with NA atoms, the number
of the non-zero matrix elements is estimated to be ν2NintNA, where ν is the number
of orbitals per atom and Nint is the number of neighbor atoms within the interaction
range. In the present Hamiltonian, ν = 4 and Nint ≈ 20. If a matrix element is
stored in the memory as a real value with the double precision, it costs eight byte
(8B) in the memory. In the system with one million atoms (NA = 106), the total
requirement of the memory size is

8[B] × ν2 ×Nint ×NA ≈ 8[B] × 16 × 20 × 106 ≈ 2.5[GB], (5.1)

which will exceed the limitation of the present work station (2 GB). One simple
solution for the memory size saving is not to store the Hamiltonian matrix in the
memory. Since the present tight-binding Hamiltonian is an explicit function of the
atomic coordinates (HIα,Jβ ≡ Hα,β(RI −RJ )), their values can be always calculated
when the atomic coordinates {RI} are given. The data size of the atomic coordinates
{RI} ≡ {XI , YI , ZI} is given as

8[B] × 3 ×NA ≈ 8[B] × 3 × 106 ≈ 24[MB], (5.2)

which is quite smaller than that in Eq. (5.1). So as to generate one Wannier state

|φ(PT)
i 〉, only a partial Hamiltonian matrix is required as a work array. The size

of the work array is determined by the spatial spread of the perturbative Wannier
states |φ(PT)

i 〉 in Eq. (4.94). Since the perturbative Wannier state contains about
Nint atoms in its spatial spread, the work array for the partial Hamiltonian matrix
requires the memory size of

8[B] × ν2 ×Nint ×Nint ≈ 8[B] × 16 × 20 × 20 ≈ 50[KB], (5.3)

which is negligible in the present hardware environment. The resultant Wannier
state |φ(PT)

i 〉 should be also stored in another work array, because the total memory
requirement for storing all the perturbative Wannier states is

8[B] × ν ×Nint × 2 ×NA ≈ 8[B] × 4 × 20 × 2 × 106 ≈ 1.3[GB] (5.4)

with 2NA (doubly occupied) Wannier states in silicon. A work array for a Wannier

state |φ(PT)
i 〉, on the other hand, requires only a negligible memory size of

8[B] × ν ×Nint ≈ 8[B] × 4 × 20 ≈ 0.6[KB]. (5.5)
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The use of work arrays does not cause any numerical error, because the procedures
among the different Wannier states are independent, as Eqs. (4.96),(4.97).

Here we note that the reduction of the memory requirement from Eqs. (5.1),(5.4)
into Eqs. (5.3),(5.5) means the reduction from the memory size in an O(N) system-
size scaling into that in an O(N0) = O(1) scaling. The memory size in an O(N)
scaling is required with classical freedoms, say the atomic coordinates, as in the
classical molecular dynamics.

‘Domain’ method as an optimal algorithm

In the above algorithm with work arrays, however, each Hamiltonian matrix element
should be multiply calculated among the procedures of different Wannier states,
because the localization regions for Wannier states are fairly overlapped in real
space. Such multiple calculations of the same quantities cause an extra overhead in
the CPU time. In short, the above algorithm saves the memory size but wastes the
CPU time.

Fortunately, we can construct an algorithm that is advantageous for saving both
in the CPU time and the memory size. In essence, we divided the system into some
‘domains’ in real space. We call the method as ‘domain method’. We explain the
algorithm, for simplicity, in the case of a one-dimensional (chain) system, in which
the i-th Wannier state has its localization center on the i-th bond site. The i-th bond
site lies between the i − 1-th and the i + 1-th bond sites. We classify the Wannier
states into some real space ‘domains’; the first domain contains the Wannier states
of {φ1, φ2, φ3, ....φ10} and the second domain contains those of {φ11, φ12, φ13, ....φ20},
and so on. The Hamiltonian matrix is stored as a work array for each domain.
The work array should store all the Hamiltonian matrix elements that are required
to generate all the Wannier states in the domain. The data in the work array are
commonly used among all the Wannier states in the domain. In this domain method,
a Hamiltonian matrix element will be multiply calculated, when it is included in
several domains. For example, some of the atoms that are contained in φ10 may
be included in the first and second domains. The corresponding matrix elements
should be calculated both in the procedures of the first and second domains, which
will results only in a small additional cost in the CPU time. In the view point of
the memory size, the number of elements in the work array is ν2NintN

(dom)
A , with

the number of atoms per domain (N
(dom)
A ). In the present case with silicon crystal,

the domains are defined in the three dimensional space and each domain contains
about N

(dom)
A ≈ 4000 atoms. The requirement in the memory size is estimated to

be

8[B] × ν2NintN
(dom)
A ≈ 8[B] × 16 × 20 × 4000 ≈ 10[MB], (5.6)

which consumes only a small part of the built-in memory (2 GB) in the present work
station. In the above example, the ‘domain’ method saves about 50 % of the actual
computational time. For the optimal performance, the value of N

(dom)
A should be

chosen to be as large as possible within the built-in memory size. The use of the
‘domain’ method dose not cause any numerical error.

Several comments are added on the domain method; (i) Though the domain
method requires an additional memory cost of the size with Eq. (5.6), the size is
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still in a O(N0) = O(1) system-size scaling. (ii) The efficiency of the ‘domain’
method may depend on details of the hardware environments, such as the access
speed of the memory, the size of the cache memory, the compiler options, and so on.
(iii) In the domain method, the procedures between different domains are completely
independent, which is the foundation of parallel computations.
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5.2 Variational order-N method

The variational order-N method was explained in Section 4.3. This section gives
its technical details. Particularly, we explain the algorithm for generating the wave
functions with given atomic coordinates, which corresponds to the algorithm within
one time step in molecular dynamics simulation. The technical details in dynamical
simulations will be discussed in Section 7.4.

Iterative algorithm for self-consistent loop

Since the Wannier states should satisfy the mean-field equation of Eq. (4.85), the
variational order-N method needs an iterative procedure for the self-consistency. The
iterative loop was schematically shown in Eq. (4.91) and its details are described
here. The deviation from the correct solution, Eq. (4.70), is given by

δφi ≡ δEO(N)

δ〈φi|
= (2Ω − ρΩ − Ωρ)|φi〉, (5.7)

which will decrease iteratively. We monitor the norm of the vector (|δφi|) as a mea-
sure of the convergence to the correct solution. Due to the localization constraint,
the deviation |δφi| can not reach to the exact zero. In the program code, we will
quit the iterative loop, when the deviation |δφi| stops the exponential decrease.

Here we explain one of the iterative loop for updating the wave functions:

{|φ(old)
i 〉} ⇒ {|φ(new)

i 〉}. (5.8)

(i) The one-body density matrix is constructed

ρ =
N∑
i

|φi〉〈φi|. (5.9)

(ii) The following matrix is constructed as a preparation

H̃WS ≡ H − ρΩ − Ωρ. (5.10)

(iii) For each Wannier state φi, the mean-field Hamiltonian H
(i)
WS is constructed

within its localization region

H
(i)
WS = H̃WS + |φi〉〈φi|Ω + Ω|φi〉〈φi|. (5.11)

(iv) For each mean-field Hamiltonian H
(i)
WS, Eq. (4.85) is solved numerically. The

lowest eigen state is obtained by the Lanczos method, which is reviewed in Appendix
D.3. The initial vector for the Lanczos series is chosen as the old wave function
|φ(old)

i 〉. The number of the Lanczos series nL is chosen, typically, nL = 10;

H
(i)
WS, |φ

(old)
i 〉 ⇒ (Lanczos method for Eq. (4.85)) ⇒ |φ(new)

i 〉. (5.12)
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(v) For the updated wave functions {φi}, the additional Löwdin orthogonalization
is imposed:

ρ =
∑

i

|φi〉〈φi| (5.13)

|φi〉 ⇒ |φi〉 −
1

2
(ρ− 1)|φi〉. (5.14)

In the program code, the second term of Eq. (5.14) is truncated within the localiza-
tion region of |φi〉. This orthogonalization procedure is repeated as an inner loop,
until the converge :

{(5.13) → (5.14)} → {(5.13) → (5.14)} → {(5.13) → (5.14)} → · · ·

Within the above orthogonalization procedure, the quantity

γ ≡
∑

i

|(ρ− 1)|φi〉| (5.15)

is monitored. This quantity decreases in course of the above iterative orthogonal-
ization procedure and will be zero, if no localization constraint is imposed. In the
program code, the iterative loop is stopped, when the quantity γ stops the expo-
nential decrease. A typical iterative number is two.

The procedures (i)-(v) are shown in Fig. 5.1 as a chart. The above iterative loop
is carried out iteratively for the self-consistency.

Figure 5.1: Chart of the procedures within one iterative loop for the update of wave
functions.

Optimal algorithm in inhomogeneous systems

In some practical simulations, the values of the deviations |δφi| are quite different
among the Wannier states, due to the inhomogeneous property of the system. A
typical example is seen in the brittle fracture simulations (See Chapter 7). The
Wannier states in bond breaking processes change their character significantly from
the bulk (sp3) bonding states into surface ones. The other Wannier states keep
their character of the bulk (sp3) bonding states. For an optimal algorithm, the
corresponding algorithm should be treated inhomogeneously among the Wannier
states. Here we discuss such inhomogeneous treatments among the Wannier states.
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As an inhomogeneous treatment, we can prepare the different localization regions
among the Wannier states. This treatment will be discussed in Section 7.4. As
another inhomogeneous treatment, we explain a choice in the algorithm between
the two methods called ‘band-by-band’ method and ‘all-band’ method. These names
are often used in the standard ab initio calculations, when one discusses the similar
problem. In the present program code, the wave functions are updated successively.
For example, the first Wannier state is updated (|φ(old)

1 〉 → |φ(new)
1 〉) and then the

second Wannier state is updated (|φ(old)
2 〉 → |φ(new)

2 〉). When the i-th Wannier state

is updated, the updated Wannier states for j = 1, 2, 3...i − 1 ({|φ(new)
j }j=1,2,...i−1)

are already obtained. The choice is whether the mean-field Hamiltonian for φi

(H
(i)
WS) should be constructed with the old wave functions ({|φ(old)

j }j=1,2,...i−1) or the

updated wave functions ({|φ(new)
j }j=1,2,...i−1). If we construct the Hamiltonian with

the old wave functions, we call the method ‘all-band method’. If we construct the
Hamiltonian with the updated wave functions, we call the method ‘band-by-band
method’. In the band-by-band method, the order among the successive updates is
meaningful, while it is meaningless in the all-band method. In our experiences, an
optimal choice of the order in the band-by-band method is the order sorted by the
values of the deviations {|δφi|}. That is, the Wannier states are sorted so as to
satisfy the relation |δφ1| > |δφ2| > |δφ3| · ··. In most cases of practical molecular
dynamics, the band-by-band method seems to be better than the all-band method.
Among the results of the present thesis, the all-band method is used only in the
perfect crystal case, in which all the Wannier states are symmetrically equivalent.
Here we add a comment on the band-by-band method; Since the Wannier states are
locally determined, two Wannier states that are well separated in real space do not
affect with each other. Therefore, a global sorting procedure is not necessary in the
above sorting procedure.

Preparation of initial states

Finally, the preparation of the initial Wannier states is discussed. In general, the
iteration number for convergence depends on the initial states. During the molecular
dynamics simulations, the initial wave functions can be chosen as the final wave
functions of the previous time step. In results, a typical iterative number is only
one, two or three. Therefore, the main problem is the preparation of the initial
states at the first time step of the molecular dynamics simulations. In the present
simulation of silicon, the initial Wannier states in bulk regions is the perturbative
Wannier states based on the sp3 bonding orbital. For several surface states, a lone
pair state on a surface atom is chosen to be the initial Wannier state. These initial
states are clearly good candidates, because a bonding state and a lone pair state are
typical examples of the Wannier states. For a general case, however, good candidates
for the initial Wannier states are not clear. In principle, the Wannier states can be
generated rigorously from the eigen states, as explain in Chapter 2.3, using the
unitary transformations. Though such a calculation with eigen states is applicable
only to small systems, the resultant Wannier states may give an insight for Wannier
states in large systems.
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5.3 Hybrid scheme

This section is devoted to several technical details in the hybrid scheme introduced
in Section 4.4. In this section, the notations and the calculated systems are the
same in Section 4.4, except where indicated. The following discussions are done in
the hybrid scheme between the diagonalization method for the ‘A’ subsystem and
the perturbative method for the ‘B’ subsystem.

Comparison with different settings in subspace division

Here we compare the results with different settings in the subspace division. In
Section 4.4, the setting of the subspace division was determined by choosing the
controlling parameter z(c) and its value was fixed to be z(c) = 8. The Hamilto-
nian matrix H(A)

map was prepared among all the basis set with 1024 atoms, which
requires the same computational costs as in the exact diagonalization. As a practi-
cal method applicable to large-scale calculations, we prepare the Hamiltonian matrix
H(A)

map among a partial basis set. The partial basis set is constructed from the atoms

that lie only within 0 ≤ z ≤ z(A) ≡ 12. In other words, we ignore the contribution
of ρA among the region of deeper layers (z > z(A)). This approximation is justified,
due to the decay property of the charge distribution nA(z), as shown in Fig. 4.4(b).
The choice of z(A) is independent from that of z(c), if they satisfy z(c) < z(A). The
distance (z(A) − z(c)) corresponds to the cutoff distance for Wannier states. The re-
sultant Hamiltonian H(A)

map is an explicit matrix among 64×(z(A)+1) = 64×13 = 832
atoms, which is slightly smaller than the total number of atoms (1024). The num-
ber of the occupied states for the subsystems ‘A’ and ‘B’ are unchanged (NA and
NB). The results are almost unchanged; For the band of ρA in Fig. 4.2, the band
top and bottom are numerically unchanged. The charge distribution nA(z) is also
almost unchanged from that in Fig. 4.4(a). For example, the value of nA(z = 8) is
unchanged within a numerical error of 10−6.

Now the setting of the subspace division is determined by the two indepen-
dent controlling parameters z(c) and z(A). Figure 5.2 demonstrates the results with
different values of the parameters, among which the parameters z(A) is given as
z(A) = z(c) + 4. All the results reproduce the charge transfers in the surface region,
but quantitative errors are included. When the value of z(c) increases, the size of
the ‘A’ subsystem will increase and the error will decrease. Here we should recall
that the present system is unstable due to the unreconstructed surface and is one of
the severest test cases for the methodology.

The present discussion was done just for showing the controlling parameters z(c)

and z(A) in the present hybrid scheme, which does not make any conclusive remark on
how the parameters z(c) and z(A) should be chosen in practical molecular dynamics.
Moreover, the present discussion is limited, for simplicity, to a one-dimensional
discussion for a slab system. In Chapter 7, we will discuss the hybrid scheme between
the variational order-N method and the perturbative order-N method. We will
explain that the hybrid scheme contains several controlling parameters and discuss
how they are chosen in practical large-scale calculations.
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Figure 5.2: The comparison of the results with the different values of the controlling
parameter z(c) and z(A). The averaged valence charge per atom with the function
of the depth from the surface (z) in the unit of the atomic layer. The system is
a silicon crystal with an unreconstructed surface at z = 0. The parameters z(A) is
given as z(A) = z(c) + 4. The result with the exact diagonalization is also plotted.

The choice of the energy shift parameter

Now we discuss the another important controlling parameter in the hybrid scheme,
that is, the energy shift parameter ηs. As discussed in Section 4.4, the parameter ηs

should be large enough to separate the band of ρB from ρA among the eigen value
distribution of H(A)

map, as in Fig. 4.2. The value of ηs is upper unbounded, if the
density matrix ρB is constructed from the exact Wannier states. In several practical
cases, however, the parameter ηs may be upper bounded. We show such a case
with a too large value of ηs. Figure 5.3 shows the DOS of the mapped Hamiltonian
H(A)

map, in which the parameter ηs is chosen as a too large value (ηs = 5a.u.) and
all the other controlling parameters are the same as in Fig. 4.2. The band of ρB

is placed in the energy range of ε ≈ 2ηs = 272 eV and is not plotted in the figure.
The result is completely unphysical. For example, several eigen levels of H (A)

map are
lower than the bottom of the correct valence band (ε = −14 eV). We pick out the
five lowest eigen states of H(A)

map, as examples of the unphysical low energy states.
They are unphysical not only in the energy level but also in the character of wave
functions. Their weights of s orbitals (f (i)

s ), defined in Eq. (3.9), are quite small
(0.1 ≤ f (i)

s ≤ 0.3), though the correct wave function at the valence band bottom
should be a pure s orbital (f (i)

s = 1). The highest occupied level for the subsystem
ρA, determined by Eq. (4.9), is also unphysically low (ε = −2.287 eV), because the
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Figure 5.3: The density of states (DOS) of the mapped Hamiltonian H (A)
map with a

too large value of ηs (ηs = 5a.u.).

above unphysical wave functions are included in the occupied states of ρA.

The origin of the unphysical solutions is the finite band width of ρB at the domain
x ≈ 0 in Fig. 4.3. The finite band width is estimated as ∆x = 0.2. The mapped
Hamiltonian H(A)

map contains the term of 2ηsρB and the corresponding band width is
estimated as 2ηs × ∆x = 2a.u. ≈ 54.4eV, which is comparable to the band width
in the observed DOS in Fig. 5.3. Figure 5.4 shows the density distribution of the
unphysical wave functions. They are extended states in the region of z ≥ 6, a region
of deeper layers. This property can be understood as follows; The finite bandwidth
in the DOS profile of ρB originates from the error of the orthogonality among the
perturbative Wannier states (〈φ(PT)

i |φ(PT)
j 〉 �= δij) and such Wannier states lie in the

region of z ≥ 6, as discussed above. The off-diagonal elements of the overlap matrix
〈φ(PT)

i |φ(PT)
j 〉 works formally as a transfer matrix in the Hamiltonian H (A)

map. With a

large value of ηs, the contribution of 2ηsρB is dominant in the Hamiltonian H(A)
map,

and its lowest eigen state should be an extended state among the region of z ≥ 6,
so as to gain the transfer energy due to the non-zero overlap matrix.

Fortunately, the above unphysical solutions are automatically excluded, when
the ‘A’ subsystem is determined by the variational order-N method with an explicit
localization constraint on Wannier states. For the Wannier states in the ‘A’ subsys-
tem, their localization centers are placed in the region near the surface (z < z(c))
and several localization constraints are imposed with a cutoff radius. The explicit
localization constraint on Wannier states is equivalent to the situation with the addi-
tional potential wall in the infinite hight (V (r) = ∞). Such localization constraints
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Figure 5.4: The charge distribution of the lowest five eigen states of H (A)
map with a too

large value of ηs (ηs = 5a.u.). The system is a silicon crystal with an unreconstructed
surface at z = 0.

prohibit the solutions from the unphysical extended wave functions in Fig. 5.4. In
other words, the localization constraint is an additional mechanism for the exclusion
of the ‘B’ subsystem from the ‘A’ subsystem.
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5.4 Parallelization of perturbative order-N method

Now the parallelization algorithm is discussed within the perturbative order-N method.
Since the procedures among Wannier states or among the ‘domains’ are completely
independent, as explained in Section 4.3 and 5.1, their parallelization is straightfor-
ward, at least, logically.

The Message Passing Interface (MPI) technique [83] and the OpenMP technique
[84] are the standard techniques in present parallel computations. We implement,
experimentally, both techniques and test them using a workstation cluster (SGI
Origin 3800). Here the result with the OpenMP technique is discussed. The result
with the MPI technique is discussed in Ref. [80]. The computational costs depend
on various factors in parallel computers, such as the data communication between
processors. We have not yet settled the details of the program code, which may
affect on the resultant elapse time by a factor, say, two or three. Figure 5.5 shows
a result using the OpenMP technique with up to NP = 256 processors. The sample
is a silicon cluster with about 1.4 million atoms. The solid line indicates the elapse
time for ‘electronic’ part, that is, the procedures of the perturbative order-N method.
The dashed line indicates the ideal parallel efficiency that is inversely proportional
to the number of processors (NP). The dashed line is plotted so as to cross the result
with NP = 4. Note that the result with the single processor (NP = 1) is obtained by
the non-parallelized code, in which no parallel directive is included. The resultant
elapse time at NP = 1 is slightly, by about 15 %, deviated from the ideally parallel
(dashed) line. The elapse time for ‘other part’ indicates the elapse time without
the above ‘electronic’ part. This part is equivalent, in the computational costs,
to a program code of a classical molecular dynamics with a two-body short-range
potential. The latter part is implemented in an order-N computational cost but
have not yet been parallelized.

From the elapse times in the single processor (NP = 1), we can find that the
elapse time of the ‘electronic’ part is more than 200 times larger than that of the
‘other’ part. This ratio is based on the quantum mechanical prefactor ν2 = 16
discussed in Section 2.4. Since the value of 16 is the minimal prefactor, the observed
prefactor of 200 is a reasonable value for the practical code. Due to the above large
prefactor, we do not need to parallelize the ‘other’ part, the routines for classical
molecular dynamics, at least, using less than 100 processors.
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Figure 5.5: The elapse time of the perturbative order-N calculations in the parallel
computations The OpenMP technique is used with up to NP = 256 processors. The
system is a silicon cluster with 1,423,909 atoms. We measure the elapse time per
one time step in the molecular dynamics simulation. The ‘electronic’ part indicates
the procedures with the wave functions. The ‘other’ part indicates the procedures
that are not related to the wave functions. The ‘other’ part is not parallelized.
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5.5 Wannier states in diamond structure solids

In this section, the Wannier states in the diamond structure solids are systematically
investigated [27, 85]. The present investigation is based on the universal tight-
binding theory (See Section 3.1). Particularly, we focus on the following points; (i)
The structure of the Wannier state, especially the approximate wave function using
the perturbative formulation (See Section 4.3). (ii) How the density matrix or the
electronic structure energy is reproduced, quantitatively, by approximate Wannier
states. (iii) The difference of the Wannier states among the group IV elements.

Among the above points, we will see the crucial importance of the mixing freedom
between the s and p bands. In general, the mixing or hybridization freedom between
bands is characteristic to the generalized or composite-band Wannier states (See
Section 2.3). In Appendix D.1, on the other hand, a conventional or isolated-band
Wannier state is constructed using the unitary transforms of eigen states without
mixing bands.

Hamiltonian matrix elements with sp3 orbitals

First, the nearest neighbor tight-binding Hamiltonian is described as the explicit
matrix with sp3 hybridized atomic orbitals. Within an atom pair of the diamond
structure, the eight sp3 hybridized atomic orbitals are defined, which lie on the
bond sites ({|hi〉}, i = 1, 2, · · ·8). The geometry of the eight orbitals are shown
in Fig. 5.6. Figure 5.6(a) indicates the definition of the orbitals with respect to
the sign freedom. Hereafter the above sp3 orbitals are used as the basis set of the
tight-binding Hamiltonian matrix H . The diagonal element is denoted as εh;

εh ≡ εs + 3εp

4
. (5.16)

The off-diagonal elements within the same atom, or the intraatomic hoppings, have
the unique value of

β0 ≡ −εp − εs

4
. (5.17)

The interatomic hoppings, on the other hand, are classified into four values;

β1 ≡
1

4

{
Vssσ − 2

√
3Vspσ − 3Vppσ

}
(5.18)

β2 ≡
1

4

{
Vssσ − 2√

3
Vspσ + Vppσ

}
(5.19)

β3 ≡
1

4

{
Vssσ +

2√
3
Vspσ − 1

3
Vppσ − 8

3
Vppπ

}
(5.20)

β4 ≡
1

4

{
Vssσ +

2√
3
Vspσ − 1

3
Vppσ +

4

3
Vppπ

}
. (5.21)

The values are shown in Table 5.1. Among the interatomic hoppings, the dominant
one is β1, that is, the hopping along the bond. For example, 〈h1|H|h5〉 = β1 in
Fig. 5.6.
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Figure 5.6: The geometry of the eight sp3 hybridized atomic orbitals ({|hi〉}, i =
1, 2, · · ·8), in the diamond structure. In (a), the four orbitals |h2〉, |h1〉, |h5〉, |h6〉,
forms a part of the zigzag chain within the (110) plane. The sign freedom of sp3

orbitals are shown in (a), which is essential to determine the orbital uniquely.

h1 h2 h3 h4
h1 εh β0 β0 β0

h2 β0 εh β0 β0

h3 β0 β0 εh β0

h4 β0 β0 β0 εh

h5 h6 h7 h8
h1 β1 β2 β2 β2

h2 β2 β3 β4 β4

h3 β2 β4 β3 β4

h4 β2 β4 β4 β3

εs εp − εs εh β0 β1 β2 β3 β4

C -2.99 6.70 2.04 -1.68 -9.45 -1.23 0.68 -0.87
Si -5.25 6.45 -0.41 -1.61 -4.08 -0.33 0.48 -0.59

Table 5.1: Upper tables: the classification of the non-zero elements in the minimal
tight-binding Hamiltonian with the basis set of sp3 orbitals. The geometry of each
sp3 orbitals are shown in Fig. 5.6. Lower table: the value of the matrix elements in
the carbon [64] and silicon [6] case in the energy unit of eV.

As already discussed in Section 3.1, a simple bonding and antibonding orbitals
are defined as

|b〉 =
|hi〉 + |hj〉√

2

|a〉 =
|hi〉 − |hj〉√

2
, (5.22)

with a pair of the sp3 orbitals on a bond site (|hi〉, |hj〉). The corresponding energy
levels are obtained by

εb ≡ 〈b|H|b〉 = εh + β1

εa ≡ 〈a|H|a〉 = εh − β1, (5.23)

where the value β1 is negative (β1 < 0).
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Wannier state in silicon

As explained in Section 4.3, the first-order perturbation of Eq.(4.94) gives an ap-
proximate Wannier state. Here we rewrite the formulation

|φ(PT)
i 〉 = C(0)|bi〉 +

∑
j(�=i)

C(ν(j))|aj〉 (5.24)

Here the suffix i indicates a bond site in diamond structure, which is the localization
center of the i-th Wannier state. The suffix ν specifies the inequivalent bond sites.
The coefficients will be given explicitly below.

The central region of the Wannier state is shown in Fig. 5.7, which includes
up to the second nearest neighbor bond sites. The inequivalent bond sites are
indicated as ν = 1, (2 ‖) or (2⊥). The central bond site is marked as (0). The six
first nearest neighbor bond sites are symmetrically equivalent and are marked as (1).
The eighteen second nearest neighbor bond sites are classified into two symmetrically
inequivalent sites, which are marked as (2‖) and (2⊥). Among them, the six bonds
site, marked (2 ‖), are parallel to the central bond. The other twelve bond sites,
marked (2⊥), are nearly perpendicular to the central bond. Now the (anti)bonding
orbitals should be uniquely defined with respect to the sign freedom. The definition
is given in Fig. 5.8, which determines the sign of the perturbative coefficients C(ν(j))

uniquely.

Figure 5.7: The central region of the Wannier state in the diamond structure [85].
The size of ball distinguishes the inequivalent atom sites. The central bond site is
marked as (0) and one of the first nearest-neighbor bond site is marked as (1). Some
of the two inequivalent second nearest-neighbor bond sites are marked as (2 ‖) and
(2 ⊥).

In the perturbative formulation, the spatial spread of the Wannier states is deter-
mined by the hopping range of the Hamiltonian. In the case of a Hamiltonian with
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Figure 5.8: Definition of (anti)bonding orbitals with respect to the sign freedom of
wave function, which is essential to determine uniquely the values of the coefficients
in Eq. 5.25 and Eq. 5.26. The central bonding orbital and the first and second nearest
neighbor antibonding orbitals are denoted as |b〉, |a(1)〉 and |a(2)〉, respectively.

only the nearest neighbor hoppings between atoms, it turns to be the second nearest
neighbor hoppings between bond sites. For the first nearest neighbor antibonding
orbitals, the perturbative coefficients are given [62] by

C(1)

C(0)
≈ 〈a(1)|H|bk〉

εb − εa
=
β0/2

2β1
=

(εp − εs)/8

2β1
=
αm

8
. (5.25)

For the second nearest neighbor anti-bonding orbitals, we propose the following
coefficients

C(2λ)

C(0)
≈ 〈a(2λ)|H|bi〉

εb − εa

+
(
αm

8

)2

, (5.26)

where (2λ) indicates (2 ‖) or (2 ⊥). The first term is the direct hopping term. The
second term is responsible for the successive hopping of the first nearest neighbor
hoppings, where C(0) = 1 is assumed. Note that the second term does not appear
in the standard perturbation theory of Eq. (4.95). The value of the first term is
different among the two inequivalent bond sites;

〈a(2‖)|H|bi〉
εb − εa

=
β3/2

2β1
≈ 1

34
(5.27)

or

〈a(2⊥)|H|bi〉
εb − εa

=
β4/2

2β1
≈ − 1

28
. (5.28)

Here the opposite signs between β3 and β4 results in the opposite signs between the
above coefficients. The resultant values of the perturbation coefficients are given as

C(1)

C(0)
=

αm

8
=

0.78

8
= 0.0975 (5.29)

C(2‖)

C(0)
=

〈a(2‖)|H|bi〉
εb − εa

+
(
αm

8

)2
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≈ 1

34
+ (0.0975)2 ≈ 0.0389 (5.30)

C(2⊥)

C(0)
=

〈a(2⊥)|H|bi〉
εb − εa

+
(
αm

8

)2

≈ − 1

28
+ (0.0975)2 ≈ −0.0262. (5.31)

The total weight within the second nearest neighbor bond sites is defined as

N2 ≡ |C(0)|2 + 6|C(1)|2 + 6|C(2‖)|2 + 12|C(2⊥)|2. (5.32)

The normalization condition

N2 = 1 (5.33)

is imposed so as to determine the value of C(0). In results, the Wannier state |φ(PT)
i 〉

in Eq. (5.24) is determined uniquely by Eqs. (5.25), (5.26), (5.33).
The resultant values of the coefficients are shown in Table 5.2 with the cor-

responding values of the exact Wannier state. Here the exact Wannier state is
calculated in the periodic cell of 512 atoms, without any localization constraint.
The resultant one-electron energy 〈φi|H|φi〉 has an error of 0.054 eV from the exact
value. Other physical quantities have been already discussed in Section 4.3.

|C(0)|2 |C(1)/C(0)|2 |C(2‖)/C(0)|2 |C(2⊥)/C(0)|2 N2

Perturbative 0.934 0.00904 0.00151 0.000686 1
Exact 0.938 0.00670 0.00250 0.000499 0.995

Table 5.2: Values of the perturbative coefficients in silicon, given by Eqs. (5.25),
(5.26), (5.33) and the corresponding values that is by the exact calculation with 512
atoms. The total weight within the second nearest neighbor bond sites N2 is also
shown.

Density matrix

Now we demonstrate how the density matrix is constructed, quantitatively, from
the Wannier states. For simplicity, we consider only two successive bond sites, as in
Fig. 5.9, with the four sp3 atomic orbitals, |hI〉, |hII〉, |hIII〉, |hIV〉.

Two approximate Wannier states are given by

|φ1〉 ≈ 1√
2
(|hI〉 + |hII〉) +

C(1)

√
2

(|hIII〉 − |hIV〉)

+(terms on other basis) (5.34)

|φ2〉 ≈ 1√
2
(|hIII〉 + |hIV〉) +

C(1)

√
2

(|hII〉 − |hI〉)

+(terms on other basis), (5.35)

whose centers are located on the two bond sites. These forms are simpler ones
from Eq. (5.24) in the sense that we ignore the normalization factor (C(0)) and
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Figure 5.9: Schematic pictures of the sp3 atomic orbitals |hI〉, |hII〉, |hIII〉, |hIV〉.

〈hi|H|hj〉 (eV) 〈hi|ρ|hj〉exact 〈hi|ρ|hj〉est
(i, j) = (I, II) -4.08 (=β1) 0.439 0.45

(i, j) = (II, III) -1.61 (=β0) 0.078 0.09
(i, j) = (I, III) -0.33 (=β2) -0.008 0
(i, j) = (I, IV) 0 -0.071 -0.09

Table 5.3: Elements of the Hamiltonian matrix and the density matrix on sp3 or-
bitals bases shown in Fig. 5.9. The values of 〈hi|ρ|hj〉exact are the results of the
diagonalization with 512 atoms. The values of 〈hi|ρ|hj〉est are the estimated one in
Eqs. (5.37)-(5.40) with a normalization coefficient of |C(0)|2 ≈ 0.9.

the contributions of the second nearest neighbor bond sites (C(2)). The one-body
density matrix is given by

ρ ≈ |φ1〉〈φ1| + |φ2〉〈φ2| (5.36)

on the present four sp3 orbitals. The other Wannier states ({φi}i�=1,2) do not con-
tribute the density matrix on the present orbitals, within the linear order of the
perturbation coefficient (C(1)). The matrix elements on the sp3 orbitals are calcu-
lated as

〈hI|ρ|hII〉 = 〈hI|φ1〉〈φ1|hII〉 + 〈hI|φ2〉〈φ2|hII〉

=
1√
2

1√
2

+
−C(1)

√
2

C(1)

√
2

≈ 0.5 (5.37)

〈hII|ρ|hIII〉 = 〈hII|φ1〉〈φ1|hIII〉 + 〈hII|φ2〉〈φ2|hIII〉

=
1√
2

C(1)

√
2

+
C(1)

√
2

1√
2
≈ 0.1 (5.38)

〈hI|ρ|hIII〉 = 〈hI|φ1〉〈φ1|hIII〉 + 〈hI|φ2〉〈φ2|hIII〉

=
1√
2

C(1)

√
2

+
−C(1)

√
2

1√
2
≈ 0 (5.39)

〈hI|ρ|hIV〉 = 〈hI|φ1〉〈φ1|hIV〉 + 〈hI|φ2〉〈φ2|hIV〉

=
1√
2

−C(1)

√
2

+
−C(1)

√
2

1√
2
≈ −0.1 (5.40)

within the linear order of C(1) ≈ 0.1. Table 5.3 shows the estimated values of
the density matrix 〈hi|ρ|hj〉est that are determined by the above expressions with
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multiplying the normalization factor of |C(0)|2 ≈ 0.9. The table also shows the cor-
responding exact values of the density matrix 〈hi|ρ|hj〉exact and those of the Hamil-
tonian matrix 〈hi|H|hj〉. Though the above estimation is quite simple, the resultant
values reproduce satisfactory the exact values.

Among the resultant density matrix elements, the comparison of 〈hI|ρ|hIII〉 and
〈hI|ρ|hIV〉 is interesting. In the former case, the matrix element is quite small
(〈hI|ρ|hIII〉 = −0.007), though the corresponding hopping integral is finite (β2).
In the latter case, the density matrix is non negligible (〈hI|ρ|hIV〉 = −0.069), though
the corresponding hopping integral is zero. The above facts are explained by the
quantum mechanical interference of the two Wannier states, as in Eqs. (5.39) and
(5.40).

Energy

Due to the symmetry in diamond structure, the one-electron energy of the Wannier
state εWS = 〈φi|H|φi〉 gives the average of the occupied eigen levels (Eq. (4.73)).
Here the energy εWS is estimated by the perturbative formulation without the nor-
malization condition and the second nearest neighbor terms;

εWS ≈ εb − 6
(β0/2)2

εa − εb

. (5.41)

The factor six is the number of the first nearest neighbor bond sites. The second
term can be written by

6
(β0/2)2

εa − εb
= 6

(
β0/2

εa − εb

)2

× (εa − εb)

= 6
(
αm

8

)2

× 2 |β1|

=
3

16
α2

m |β1|. (5.42)

Using αm = 0.78 and |β1| = 4.08 eV, the numerical result is obtained as

3

16
α2

m |β1| =
3

16
(0.78)2 × 4.08 [eV]

= 0.114 × 4.08 [eV]

= 0.465 [eV], (5.43)

which explains about 80 % of the exact value of εWS − εb ≈ 0.59 eV. Since the
energy εb is that of an ideal sp3 bonding orbital on a bond site, the energy difference
εWS−εb corresponds to the energy gain of the Wannier state for its spatial extension
in condensed matters.

As an overview of the cohesive mechanism, Fig. 5.10 shows several energy levels
of silicon. From Fig. 5.10, we find that the energy gain for the sp3 bonding (εh −
εb) is much larger than the energy gain for its spatial extension (εb − εWS). We
also find that the sp3 bonding is governed by the energy competition between the
bonding energy, scaled by εa − εb and the dehybridization energy, scaled by εp − εs,
as is discussed in Section 3.1. This competitive situation is characterized by the
metallicity parameter αm ≡ (εp − εs)/(εa − εb) = 0.78.
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Figure 5.10: Several energy levels of the silicon crystal within the tight-binding
Hamiltonian; The atomic s, p and sp3 levels are denoted as εs, εp and εsp3 , re-
spectively. The energy levels of the ideal sp3 hybridized bonding and antibonding
orbitals are denoted as εb and εa, respectively. The energy level of the Wannier
states is denoted as εWS, which is the weighted center of the occupied (valence)
band.

Wannier states in conduction band

Here we introduce an interesting concept, that is, the Wannier state in the conduc-
tion band. We discussed that the Wannier state in the valence band is quite similar
to an sp3-hybridized bonding orbital, as in Eq. (5.24). Here we propose an wave
function for the Wannier state in the conduction band

|φ(PT)
i(cond)〉 ≡ C(0)|ai〉 +

∑
j(�=i)

C(ν(j))|bj〉, (5.44)

where the coefficients are the same values as in Eq. (5.24). The resultant wave
function is orthogonal to the corresponding Wannier state in the valence band

〈φ(PT)
i(cond)|φ

(PT)
i 〉 = 0. (5.45)

Between Eq. (5.24) and Eq. (5.44), the role of the bonding and antibonding orbitals

({|bi〉, |ai〉}) exchange with each other. One may think that the relation of |φ(PT)
i(cond)〉

and |φ(PT)
i 〉 is analogous to the electron-hole symmetry. It should be noted, however,

that the present Hamiltonian H does not have the electron-hole symmetry.
The above concept of the Wannier states in the conduction band can be also

defined by the variational method, because the present tight-binding Hamiltonian
is upper bounded. The Wannier states in the conduction band can be obtained
by the energy maximization procedure of the energy functional that is used for the
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Wannier state in the valence band. As the iterative procedure, the initial state is
chosen as the antibonding orbitals {|ai〉}i=1,N and the energy shift parameter ηs

is chosen to be sufficiently low (ηs → −∞). The resultant Wannier states satisfy
Eq.(4.47), if the N Wannier states are interpreted as those in the conduction band.
It is noteworthy that the Wannier states in the valence and conduction bands form
a complete orthogonal basis set for the present Hamiltonian.

Construction of Wannier states by projection methods

We also introduce several methods to construct Wannier states, which are different
from the variational or perturbative procedure. They were used for the calculation
of the exact Wannier state within small systems [85]. The sample contains 512 atoms
and no localization constraint is imposed on Wannier states. To construct the exact
Wannier states, a projection method is used with a ‘reference’ density matrix ρref .

The practical procedure is as follows; (i) Diagonalizing the Hamiltonian H to

obtain the eigen states {φ(eig)
k }. The exact ground-state density matrix is calculated

as the reference density matrix ρref

ρ̂ref ≡ ρ̂GS ≡
occ.∑
k

|φ(eig)
k 〉〈φ(eig)

k |. (5.46)

(ii) Preparing proper initial states {φ(0)
j } for Wannier states which covers the set of

the correct ground state wave functions. In the present cases of diamond structure
solids, we use a set of ‘simple’ bonding orbitals {bj} on each bond site

|φ(0)
j 〉 ≡ |bj〉. (5.47)

(iii) Projecting the ‘reference’ density matrix ρ̂GS on the initial states

|φ(0)
j 〉 ⇒ |φ(1)

j 〉 ≡ ρ̂ref |φ(0)
j 〉. (5.48)

(iv) Using the Löwdin orthogonalization, Eq. (5.14), iteratively.
The resultant Wannier states satisfy the mean-field equation (4.62) exactly,

which corresponds to the variational order-N method without any localization con-
straint. Note that this method was used for construction of initial states in an iter-
ative order-N procedure with the approximate density matrix [86]. Wannier states
in the conduction band can be also constructed by a similar projection method. As
the ‘reference’ density matrix, we use that in the conduction band

ρ̂ref ≡ ρ̂c ≡
unocc.∑

k

|φ(eig)
k 〉〈φ(eig)

k |, (5.49)

instead of ρGS in Eq. (5.46). In the iterative procedure, antibonding orbitals {aj}
are prepared as the initial states {φ(0)

j }.
Moreover, it may be also interesting to apply the above procedure formally

to metallic systems. Instead of the ground state density matrix, we use a finite-
temperature formulation

ρ̂ref ≡ ρ̂τ ≡
∞∑

k=1

fτ (εk)|φ(eig)
k 〉〈φ(eig)

k | (5.50)
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where fτ (ε) is a Fermi-Dirac function with a temperature parameter τ . The resultant
one-electron states satisfy the correct orthogonality and give a generalized feature
of the present Wannier states, though the sum of the one-electron energy of the
Wannier states

occ.∑
j

〈φj|Ĥ|φj〉 (5.51)

is no more equal to the energy of the reference density matrix

Tr[ρ̂refĤ] =
∞∑

k=1

fT (ε
(eig)
k )εk. (5.52)

The Wannier states constructed from the above projection methods will appear
later in this section.

Wannier states among different elements (1)

So far, in this section, we focused on the silicon case. Hereafter, we will investigate
systematically the Wannier states among the diamond structure solids (C, Si, Ge
and α-Sn). Due to the universal tight-binding theory, the Wannier states among
the above elements can be described by the difference of the metallicity parameter
αm. Typical values of the metallicity parameter αm are αm = 0.35 for C and αm =
0.75−0.78 for Si or Ge (See Section 3.2). For a systematic investigation, we tune the
bond length d in the Hamiltonian for silicon [6], while the atomic energy difference
(εp − εs) is fixed. The above tuning corresponds to the tuning of the metallicity αm.
By definition, the silicon case corresponds to the case with d = d0 ≡ 2.35 Å and
αm = 0.78. The case with d = 0.8 d0 gives the value of αm = 0.47, which will be
referred as the carbon case in the sense of a low metallicity case.

Figure 5.11 demonstrates the spatial spread of the Wannier state calculated by
the variational or perturbative order-N method [27]. In the variational method,
the periodic cubic cell with NA = 4096 atoms is used and each Wannier state
contains about 150 atoms in its localization constraint. In the perturbative method,
the wave functions are analytically determined by Eqs. (5.25),(5.26),(5.33), which
is independent from the simulation cell. The case (a) is the carbon case (d =
0.8d0) and the case (b) is the silicon case (d = d0). The Wannier state is the
conduction band is also plotted in Fig.5.11(c) in the silicon case (d = d0). The wave
function is constructed in the variational procedure by the energy maximization
procedure, as explained above. The resultant wave function shows the similar decay
property as in the valence Wannier state (b), and the role of bonding and antibonding
orbitals seems to exchange with each other approximately. The Wannier state is the
conduction band is constructed also from the perturbative method using Eq. (5.44).
In all the cases, the variational method results in well-localized wave functions.
The weight of the central bond is about 96 % in (a) or 94 % in (b) and (c). The
summation of the weight up to the bond step of n = 2 is more than 99.7 % in all
the cases.

Figure 5.12 also shows the spatial spread of the calculated Wannier state [85].
In Fig. 5.12, the closed circle and open square are plotted by the same plotting
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Figure 5.11: Weight distributions of Wannier states on each (anti)bonding orbital,
as a function of the bond step from the central bond [27]. The closed circles and the
open squares denote the weights on bonding and anti-bonding orbitals, respectively.
(a) the Wannier state in the carbon (d = 0.8d0), (b) the Wannier state in the silicon
case (d = d0), (c) the Wannier state in the conduction band in the silicon case. The
crosses denote the values from the perturbation theory. Note that, in (a), the two
values |C(2‖)|2 and |C(2⊥)|2 from the perturbation theory are almost identical.

manner as in Fig. 5.11. The difference from Fig. 5.11 is the fact that Fig. 5.12 shows
the exact Wannier state with a smaller periodic cubic cell that contains NA = 512
atoms. The above difference of the simulation cell will give no significant difference
in the following analysis of the resultant Wannier states. Note that the present exact
Wannier state is constructed by the projection method explained above.

Figure 5.12(a)-(c) shows the Wannier states with different values of d; The case
(a) is the carbon case (d = 0.8d0), as in Fig. 5.11(a), and the case (b) is the silicon
case (d = d0) as in Fig. 5.11(b). The case (c) is a case with a high metallicity
(d = 1.07d0), where the band gap is almost vanished (0.15 eV). The case (d) is
the silicon case (d = d0), but only two large hoppings (β0 and β1) are considered
and the other hoppings (β2, β3, β4) are ignored. This simpler Hamiltonian is called
‘Weaire-Thorpe model’ [87, 88]. The case (e) is the Wannier state for the conduction
band with the silicon case (d = 1.0), as in Fig. 5.11(c). As a total decay profile,
Fig. 5.12 also shows the weight of the ‘tail’

T (n) ≡
ν(χ)≥n∑

α

|〈χ|φj〉|2, (5.53)

where the summation is done over the (anti)bonding orbitals outside the cutoff bond
step n. Note that T (0) = 1 and T (∞) = 0, from its definition. As a measure of the
total locality, the typical value of (1− T (3)) is about 99.5 %, which corresponds to
the weight of the local region shown in Fig. 5.7.
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Figure 5.12: Weight distributions of Wannier states on each (anti)bonding orbital
and the weight parameter T (n), as a function of the bond step from the central
bond. The closed circles and the open squares denote the weights on bonding and
anti-bonding orbitals, respectively. The solid line is T (n) and the dashed line is the
line connecting the two points T (1) and T (3). The cases (a)-(c) are the Wannier
states of the valence band with (a)d = 0.80d0, αm = 0.47, (b)d = d0, αm = 0.78,
(c)d = 1.07d0, αm = 0.93. The case (d) is the one with d = d0, using only β0 and
β1. The case (e) is the Wannier states in the conduction band with d = d0.

Apart from the decay property, Fig. 5.11 and Fig. 5.12 show the following two
properties of the Wannier states, except Fig. 5.12(d); (i) The values of the coefficients
of the second nearest neighbor bond sites, C(2‖) and C(2⊥), are split. (ii) The weight
distributions show zigzag lines as the function of the bond steps. This is because the
spatial extension of the Wannier states is contributed by two hopping mechanisms,
that is, the nearest neighbor hopping and the second nearest neighbor hopping. The
two hopping mechanisms are seen directly in the perturbative formulation, as the
first and second terms of Eq. (5.26). Here we recall that the ratio between the inter-
atomic hopping integrals (β1, β2, β3, β4) are almost unchanged among the elements,
due to the universality. Within the above tendency, the two hopping mechanisms are
quite different in the dependence of the metallicity αm. The nearest neighbor hop-
ping is dependent on the metallicity, which appears as (αm/8) in Eqs. (5.25),(5.26),
because it is determined by the ratio between the interatomic hopping β1 and the
intraatomic hopping β0 (See Eq. (5.25)). The second nearest neighbor hopping, on
the other hand, is independent on the metallicity αm, because it is determined by
the ratio between two interatomic hoppings (See Eqs. (5.27),(5.28)). Therefore, the
perturbative coefficients of Eqs. (5.25),(5.26) are reduced to

C(1)

C(0)
≈ αm

8
(5.54)

C(2‖)

C(0)
≈ 1

34
+

(
αm

8

)2

(5.55)

C(2⊥)

C(0)
≈ − 1

28
+

(
αm

8

)2

. (5.56)

The above two hopping mechanisms explain the properties (i) and (ii); (i) The sum
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of the two terms in Eq. (5.55) or Eq. (5.56) directly gives the splitting in the second
nearest neighbor coefficients. (ii) The existence of the two hopping mechanisms
explains the zigzag line of the weight distribution.

In Fig. 5.12(d), the hopping integrals β3, β4 are ignored, which means the lack
of the second nearest neighbor hopping. In the perturbative formulation, the first
term of Eq. (5.55) or Eq. (5.56) should be replaced by zero. The resultant Wannier
state does not show the above two properties (i) (ii). It should be noted that the
parametrization in Fig. 5.12(d) does not satisfy the universal tight-binding theory.

Wannier states among different elements (2)

Now we discuss the relation between the band gap ∆ and the structure of the
Wannier state. In Section 3.1, we explained that the band gap can be estimated as
Eq. (3.11). Here the result of the estimation is rewritten;

∆est ≡ 2|β1| (1 − αm). (5.57)

A negative value of ∆est means the band overlap between the valence and conduction
bands. In Fig.5.13, several results are plotted as the function of the estimated band
gap ∆est. The plotted quantities are the band gap ∆, the metallicity αm and the
first nearest neighbor coefficient |C(1)|/|C(0)|. In the cases with ∆ = 0, the wave
functions are generated by the above-discussed projection method with Eq. (5.50).
These results shows an extrapolation of the cases with nonzero band gaps (∆ > 0).

As an entire tendency in Fig. 5.13, we observe that the band gap ∆ decreases
with the increase of αm (αm → 1), as is expected from Eq. (5.57). We also observe
a good agreement between αm and 8|C(1)/C(0)|, as is expected from Eq. (5.54).
Particularly, the band gap vanishes at |C(1)/C(0)| ≈ 1/11, which is close to the
expected value 1/8.

It is important that, even if the band gap almost vanishes, the dominant weight
of the Wannier state is still localized within the central bond, which justifies the
perturbative treatment. This can be explained by the two hopping mechanisms;
The nearest neighbor hopping contributes the nearest neighbor coefficient C(1) as
αm/8. The sum of the weight among the six nearest neighbor bond sites (W1) can
be estimated as

W1 ≈ 6
(
αm

8

)2

. (5.58)

Due to the presence of the factor 1/8, the weight W1 in Eq. (5.58) is still small, even
if the band gap becomes small (αm ≤ 1). The second nearest neighbor hopping is
almost unchanged among elements, which is seen as 1/34 or −1/28, in Eq. (5.55) or
Eq. (5.56), respectively. In results, the coefficients of the second nearest neighbor
bond sites are not significantly changed with the change of the band gap, which is
seen in Fig. 5.12(a)-(c).

The above explanation shows that the factor 1/8 in Eqs. (5.54), (5.55), (5.56),
plays a crucial role of the locality of Wannier states. The origin of the factor 1/8 is
given by the factor 1/4 in Eq. (5.17). The origin can be clarified as follows; If two
hybridized orbitals are formed in one atom with the sp hybridization

|h′
1〉 ≡ |s〉 + |pz〉√

2
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Figure 5.13: The quantities ∆, 8|C(1)/C(0)| and αm are plotted as a the function
of the estimated band gap ∆est [85]. The exact calculation is carried out using the
periodic cell with 512 atoms. The characters (a)-(c) indicate the the cases in Figs.
5.12 (a)-(c), respectively.

|h′
2〉 ≡ |s〉 − |pz〉√

2
, (5.59)

the corresponding intraatomic hopping is reduced to

〈h′
1|H|h′

2〉 =
1

2
{〈s| + 〈pz|}H {|s〉 − |pz〉} = −εp − εs

2
. (5.60)

When we compare the above result and Eq. (5.17), we can find that the factor 1/4 in
Eq. (5.17) is directly related to the sp3 hybridization. In other words, the factor 1/4
is directly related to the four-fold coordination or a three-dimensional effect. The
above discussion shows that the locality of the present composite band Wannier
states is directly related to the mixing freedom of the bands. We have discussed
that the locality of the composite band Wannier states can be explained, generally
and quantitatively, as the virtual impurity state (See Section 4.2). We should say
that it may not be fruitful to try to understand their locality within the analogy to
that of the conventional (isolated band) Wannier states.

Finally, we comment on the the long-distance, or ‘tail’, behavior of the Wannier
state. In the present context, the locality is discussed in the sense that the dominant
weight is occupied at a few bond sites. The long-distance behavior seems to be
sensitive to the value of the band gap. See, for example, the weight distribution at
the bond step n = 8 in Fig. 5.12 (a)-(c). Such long-distance behavior, however, does
not explicitly contribute to the energy, which is the fundamental justification of the
order-N methods, as discussed in Section 2.4.
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6.1 Fracture theory and silicon

For the present understanding of fracture mechanism, a pioneering work was given,
in the 1920’s, by Griffith [89] within a continuum theory. Nowadays, many industrial
manufacturing processes involve some fracture processes and many material designs
are based on the techniques against fracture. There are a huge number of the related
investigations on various materials with various purposes. See Refs. [90, 91, 92, 93]
for an overview. Appendix C.2 is prepared as a brief review of the fundamental
continuum theory of brittle fracture.

Silicon is an ideally brittle material and is studied intensively, because we can
obtain essentially dislocation-free single crystals. Several fundamental mechanisms,
such as the brittle-ductile transition [94, 95, 96], are investigated in silicon as an
ideal material. In macroscale samples, the easiest cleavage plane is the (111) plane,
in which the surface structure forms the 2×1 structure [97, 98, 99, 100]. The 2×1
structure is stable at room temperature but will be transformed irreversibly into the
famous 7×7 structure at high temperatures. In other words, the 2×1 structure is a
metastable structure.

Here we summarize the Griffith theory [89] (See Appendix C.2 for details). As
an ideal situation, suppose a two-dimensional case shown in Fig. 6.1, in which the
macroscale sample has an initial crack with the length of 2c and is under the uniaxial
external load σ. The total energy is described by the energy competition between
the energy gain of the strain relaxation and the loss of the surface formation energy.
The former energy is a volume term that is proportional to (length)3, while the
latter energy is a surface term that is proportional to (length)2. The dimensional
analysis gives a typical length scale, which is analogous to the theory of nucleation,
(See textbooks of statistical mechanics, such as Ref.[101]). In the present case, the
critical length is given as

c = cG ≡ 2

π

γE

σ2
. (6.1)

The derivation is given in Appendix C.2. The quantity γ is the loss of the surface
formation energy per unit surface area. The quantity E is the Young modulus
within the two-dimensional cases; E = E3D in plane stress (‘thin’ plates) or E =
E3D/(1− ν2) in plane strain (‘thick’ plates), with the ordinary Young modulus E3D

and the Poisson ratio ν. Equation (6.1) gives the critical crack length cG for the
spontaneous fracture propagation. In other word, if the sample contains a crack with
the length of c, the critical stress for fracture σ will be determined by Eq. (6.1).

The above Griffith theory gives a consistent and quantitative picture for the
fracture mode of the Si(111) plane with the surface formation energy of γ ≈ 1[J/m2]
[102]. Here the surface formation energy was estimated from several experimental
results and electronic structure calculations [102] (See Appendix C.2). The (110)
plane, another possible cleavage plane in macroscale samples, was also investigated
[103, 104], in which the corresponding surface energy γ is obtained on the same
order. To convert physical quantities into an atomistic scale, a typical atomistic
length is introduced

d0 ≡ 3√v0 ≈ 3[Å], (6.2)
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Figure 6.1: Schematic picture of a sample with a crack under the external load σ.
The length of the crack is defined as 2c.

where v0 is the volume per atom in bulk silicon. The length d0 is comparable to
the bond length (2.35 Å). The above surface formation energy (γ ≈ 1[J/m2]) is
interpreted as a ‘chemical’ energy per atom, which is on the order of

εchem ≡ γd2
0 ≈ 1 [eV]. (6.3)

The above energy scale can be reduced to the bond breaking energy. A comparable
energy quantity is the heat of fusion (50 kJ/mol ≈ 0.5 eV/atom). On the other
hand, an external load of

σ ≈ 1 [GPa] (6.4)

can be transformed into the averaged strain energy per atom, which is on the order
of

εstrain ≡ σd3
0 ≈ 10−1 [eV]. (6.5)

For fracture phenomena, the above two energy quantities should satisfy the inequal-
ity

εstrain 
 εchem. (6.6)

If the above inequality were in the reverse order (εstrain � εchem), the energy increase
due to the external load would exceed the total binding energy and all the chemical
bond would be broken. With the above quantities, Eq. (6.1) is rewritten as the
product of dimensionless quantities;

cG
d0

=
2

π
× E

σ
× γd2

0

σd3
0

=
2

π
× E

σ
× εchem

εstrain

(6.7)
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For a silicon case, the critical length cG is estimated. The Young modulus E is
on the order of 102 GPa. The critical crack length with σ = 1[GPa] is given as

cG ≈ E

σ
× γ

σ
≈ 102 [GPa]

1 [GPa]
× 1 [J/m2]

1 [GPa = 109J/m3]
≈ 100 [nm]. (6.8)

Since the critical length cG is proportional to σ−2 (cG ∝ σ−2), the critical length
with σ = 10[MPa] will be a macroscale length

cG ≈ 1[mm]. (6.9)

To see a typical scale of the macroscale fracture experiment, we pick out a recent
fracture experiment [105], in which the sample size is 150 mm× 100 mm × 0.75 mm
and the critical stress is given by σ = 5 − 15 MPa.

In short, the above case of the Si(111) cleavage plane is an case that the theo-
retical and experimental results give a consistent picture within the Griffith theory.
One unsettled issue is how and why the cleaved surface is formed in the (111) surface
with the metastable (2×1) reconstructed structure. As well as the above issue, we
focus on the fracture of nanocrystals, which gives the purpose of the simulations in
Chapter 7.
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6.2 Requirement on atomistic theory for fracture

In this section, the requirement for atomistic theory is discussed in the context of the
fracture simulation of silicon (nano)crystals. Especially, we will compare classical
models and electronic structure calculations. As discussed in the previous section
(Section 6.1), the total (static) energy for fracture phenomena should be written as

(total energy)

= (energy for strain relaxation in bulk region)

+ (energy for structural changes in surface and/or crack tip region),(6.10)

where we describe the energy contributions from the crack tip region and the other
surface region as one energy term (the second term). In the continuum theory, the
crack tip region is distinguished from the other surface region, due to the singularity
of the stress fields (See Appendix C.2). In the atomistic theory, on the other hand,
there is no reason to distinguish the crack tip region from the other surface region.
In Eq. (6.10), the first energy term originates from small deformation in the bulk
region, which can be described by the theory of linear elasticity. The second energy
term originates from bond breaking and rebonding, which is beyond linear elasticity.
Therefore, the essential requirement for the atomistic theory is to reproduces the
two energy terms in Eq. (6.10).

There are several popular classical potentials for silicon, such as the Stillinger-
Weber potential [82] and the Tersoff potentials [106, 107]. See Ref.[108] for the
comparison between classical potentials. Using classical potentials, several molecular
dynamics simulations have been performed for fracture simulation of silicon crystals.
As a recent one, we pick out a study with 105 atoms [109, 110]. A more recent
work, however, pointed out the limited applicability of classical modelings and the
importance of the electronic structure calculations [103, 104]. As a fundamental
point, it is difficult to construct an unique classical model that can reproduce the
atomic structures for various ‘environments’ of bulk and non-bulk phases. One of the
major difference for the ‘environment’ is the difference of the coordination number
of atoms, which is the crucial difference between the first and second energy terms
in Eq. (6.10). The above difficulty was pointed out, for instance, in the original
paper of the Tersoff potential [107], in which two parameter sets, called ‘Si(B)’ and
‘Si(C)’, were prepared for different environments. In the above context, a dynamical
fracture simulation is one of the severest application, because the environment of
atoms is dynamically changed from the bulk one to non-bulk ones.

As explained in Chapter 3, the difference of ‘environments’ is directly related to
the quantum mechanical freedoms of electronic structures. In Chapter 3, we have
explained how the quantum mechanical freedoms govern the atomistic structures
among solid, liquid and surface phases. These structures are systematically under-
stood by the universal tight-binding theory. For example, the asymmetric dimer of
the Si(001) surface is governed by the following quantum mechanical freedoms; (i)
the hybridization freedom between s and p orbitals, (ii) the orthogonality relation
between wave functions. In the present order-N method, the above two freedoms
are included, which is the main reason why our order-N calculation reproduces the
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asymmetric dimer of the Si(001) surface. We will see, in the next chapter (Chapter
7), these quantum mechanical freedoms are essential in the fracture processes.

Now we discuss possible theoretical connections between the electronic structure
calculation and the classical models. In Section 4.3, we discussed the perturbative
formulation with non sp3 wave functions as a key for classical models in non-bulk
phases. Such perturbative formulations will be possible, if reliable unperturbed
wave functions are prepared. For example, the different models will be prepared
in bulk and surface regions, by preparing different unperturbed wave functions.
The applicability of the models is justified, when the calculated perturbative terms
are much smaller than the unperturbed term, which can be checked during the
simulation. The application of the above theoretical approach may be useful for
fracture simulations, but is beyond the present thesis.

Finally, we should say that the atomistic simulation with macroscale number
of atoms (1023 atoms) is impractical, even with the present large-scale electronic
structure calculations and with parallel computers. Therefore, the atomistic theory
of fracture should be reasonably connected to the continuum theory, when we would
like to discuss the fracture phenomena from nanoscale to macroscale. We will discuss
this point later, in the summary of our simulation results (Section 7.7).
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6.3 Energetics of Si(001) surface

The Si(001) surface is important in the general context of the nanoscale material
theory, since it is used as the standard template in the present semiconductor tech-
nology. Here we review the energetics of the related structures, because the Si(001)
surface will appear in the fracture simulation in Chapter 7. As already explained in
Section 3.2, the asymmetric dimers are formed as the basic structure in the Si(001)
surface. In this section, we will discuss (i) flipping freedoms of the asymmetric
dimers and (ii) step structures.

Flipping freedoms of the asymmetric dimers

In experimentally observed Si(001) surfaces, the dimer alignment forms rows, as in
Fig. 6.2. Here the figure (a) shows the dimer rows of the asymmetric dimer in the
alternately buckled configuration, which is denoted as the ‘(4×2)’ configuration.
The figure (b) shows, on the other hand, the dimer row of the symmetric dimers,
which is denoted as the ‘(2×1)sym’ configuration. Now the ‘intra-row’ direction is
denoted as the [11̄0] direction in Fig. 6.2, while the ‘inter-row’ direction as the [110]
direction.

Figure 6.2: Geometry of the Si(001) surface with asymmetric dimers (a) and sym-
metric dimers (b). In (a), a black rod shows the reconstructed bond and a red ball
shows the upper atom of the asymmetric dimer. In (b), a bold black rod shows
the reconstructed double bond. The former one is in the (4 × 2) configuration with
respect to the flipping freedom. The geometries are obtained in the calculation of
Fig. 3.2.

Now the fundamentals of the electronic structure are explained for the Si(001)
surface. One surface dimer has, formally, four dangling bond orbitals, as explained
in Section 3.2. Among them, two orbitals are transformed into the σ bonding state
and the σ∗ antibonding states, which lie among the two atoms of a surface dimer.
The energy levels of the bonding and antibonding states lie within the energy region
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of the valence and conduction bands, respectively. The other two dangling bond
orbitals are transformed into the two surface states, which are denoted as the ‘π’
and ‘π∗’ states. The ‘π’ state, the lower energy state, is occupied and its physical
picture has been explained in Section 3.2. If the ‘π’ state is a π-bonding state in a
symmetric dimer, the ‘π∗’ state is the corresponding antibonding state. If the ‘π’
state is an atomic state of the ‘up’ atom in an asymmetric dimer, the ‘π∗’ state is
another atomic state of the ‘down’ atom. The corresponding energy levels forms the
surface band that appear within the energy gap between the valence and conduction
bands. As a common feature in Fig. 6.2(a) and (b), the numbers of bond steps
between two nearest neighbor surface dimers are different among the intra- and
inter-row directions. In the intra-row direction, two nearest neighbor dimers lies
with three bond steps, while, in the inter-row direction, two nearest neighbor dimers
lies with five bond steps. From the viewpoint of the nearest neighbor tight-binding
Hamiltonian, two nearest neighbor dimers are coupled with the successive hopping
along three bond steps in the intra-row direction, but along five bond steps in the
intra-row direction. This explanation should result in an anisotropic dispersion of
the surface band along the intra- and inter-row directions. The electronic structure
calculation with a tight-binding Hamiltonian can be seen, for example, as Fig.1 of
Ref. [73], which shows the expected anisotropic dispersion of the surface band; The
surface band shows a large energy dispersion in the intra-row direction, such as
J → K, but shows a small dispersion in the inter-row direction, such as K → J ′.
This tendency can be also found in ab initio calculations, such as Fig.19 in Ref. [66].
This fact is consistent to the above explanation with the number of bond steps. Here
two technical comments are added; (i) The electronic structure figures in Ref. [73]
and Ref. [66] are drawn in different definitions of the unit cell. See these papers for
details. (ii) Ab initio electronic structure calculations may be carefully discussed for
surface bands, because the LDA usually underestimates the band gap. See the last
paragraph of Appendix A.1.

With respect to the flipping freedom of the asymmetric dimers, there are several
possible configurations, which are schematically shown in Fig. 6.3. Here an arrow
indicate the buckling of the dimer. In other words, an arrow is a projected vector
from the ‘down’ atom into ‘up’ atom in a dimer. The figure(a) shows the ‘(4×2)’
configuration, the same structure as that in Fig. 6.2(a). The figure (b) and (c) are
denoted as the ‘(2×2)’ and ‘(2×1)’ configuration, respectively. Sometimes the flipping
of the asymmetric dimers is formally mapped to the flipping of virtual ‘spins’. In
terms of the spin structure, the ‘(4×2)’ configuration is the anti-ferro configuration
both in the inter- and intra-row directions. The ‘(2×2)’ is the anti-ferro configuration
in the intra-row direction but the ferro configuration in the inter-row direction. The
‘(2×1)’ configuration is the ferro configuration both in the inter- and intra-row
direction. The results of electronic structure calculations are summarized in Table
6.1, which shows the ‘(4×2)’ configuration is the ground state of the perfect (001)
surface. The energy differences in the table can be understood by the difference
of the coupling constants between the flipping freedoms among dimers. From the
table, we observe the following properties; (i) the energy difference between the
(4×2) and (2×2) configurations is smaller than that between the (2×2) and (2×1)
configurations. This fact is consistent to the above explained fact that the inter-row
coupling is described by the hopping in larger number of bond steps (five bond steps)
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Figure 6.3: Schematic pictures of the reconstructed Si(001) surfaces. The flipping
freedom of an asymmetric dimer are indicated as an arrow from the lower atom to
the upper atom; (a) (4 × 2) configuration, (b) (2 × 2) configuration and (c) (2 × 1)
configuration.

(meV/Dimer) order-N exact TB ab initio
E(2×1) − E(2×2) 94.2 62.4 48 ± 18
E(2×2) − E(4×2) 18.0 1.2 3 ± 13

Table 6.1: Calculated energy difference among the different configuration of the
flipping freedom on Si(001) surface. The energies are calculated by the variational
order-N method (present work), an exact tight-binding (TB) calculation [111] and
an ab initio calculation [66].

than the intra-row coupling (three bond steps). (ii) The order-N method results in a
large error from the exact ( diagonalization ) results. The methodological problem,
however, is not only within the order-N method, since Table 6.1 contains the energy
difference in a quite fine scale (meV/atom). Such an energetically delicate structure
should be carefully discussed, generally, in the total energy methods, which is implied
by the large error bars of the ab initio result in Table 6.1.

Here we discuss the dynamics of the flipping freedoms. At room temperature,
the flipping freedoms is not frozen and an STM image is obtained with symmetric
dimers, due to the time average of the flipping motions. Low temperature STM
observations give images with the asymmetric dimers [67]. The above experimental
fact is consistent to the results in Table 6.1, which contains the energy scale smaller
than the kinetic energy of room temperature (300 K ≈ 1/40 eV). A direct theoretical
approach was done with a model ‘spin’ Hamiltonian [112, 113], which maps the
flipping motion, formally, to that of a two-dimensional ‘spin’ system. The ‘spin’
Hamiltonian contains the spin-spin interaction parameters and the parameters are
determined so as to reproduce the calculated total energies among different ‘spin’
or flipping configurations. As another experimental feature, the atomic scale local
environment, such as surrounding defects or steps, seriously influences the flipping
motion of the dimers. See, for example, the introduction part of a related theoretical
paper [111]. In the paper, the flipping motion on perfect or defective Si (001)
surfaces is studied by tight-binding molecular dynamics with 102 atoms. The flipping
motion was observed experimentally [114], by the time trace of the STM tunneling
current at an atom of flipping dimer with T = 70 K. The sampling rate is 16.7
kHz (≈ (0.06 ms)−1) and the observed frequency of the flipping motion is 0.81 kHz
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(≈ (1.2 ms)−1). In short, the flipping freedom of the asymmetric Si(001) surface
dimers can be thermally driven and is sensitive to local atomic scale environments.
Its dynamics is important, at least, for its influence on various processes, such as
epitaxial growth, etching, and chemical reaction.

Step structures and surface strain energy

Experimentally observed Si(001) surfaces contain several step structures and now
their energetics is focused. See a review [115]. The four types of step structures
can be defined in the Si (001) surface. They are denoted as SA, SB, DA and DB

[116], and are shown schematically in Fig. 6.4. Here the letter ‘S’ or ‘D’ indicates
the single (S) or double (D) step structure. The corresponding atomistic pictures
can be seen in Refs.[116, 115] or textbooks.

Figure 6.4: Schematic pictures of step structures on the (001) surface. The four
types of step structures are denoted SA, SB, DA and DB, respectively, according to
Ref. [116]. A red spring indicates the bond of the surface dimer. The asymmetry of
the dimer is ignored in the picture. The actual dimers are asymmetric within the
alternating flipping geometry.

Within a perfect Si(001) surface, the asymmetric dimers are formed in the one
direction , such as the [110] direction in Fig. 6.2. The resultant structure shows
the (2×1) symmetry, if the flipping freedoms are ignored. Across the single step
structures SA or SB, the dimer directions are perpendicular between the upper and
lower atomic layers. In other words, the single step structures is a boundary between
a (2×1) domain and a (1×2) domain. In the SA structure, the step lies in the parallel
direction to the dimers of the lower atomic layer, while, in the SB structure, the
step lies in the parallel direction to the dimers of the upper atomic layer. Across a
double step structure, DA or DB, the dimer directions are parallel between the upper
and lower atomic layers. In other words, the double step structures is a boundary
between a (2×1) domain and another (2×1) domain on a different atom layer. In
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the DA structure, the step lies in the perpendicular direction to the dimers, while,
in the DB structure, the step lies in the parallel direction to the dimers.

The step formation energies for the four types of steps are summarized in Table
6.2. Among electronic structure calculations in the table, the step formation energy
is defined as the loss of the total energy to form the step in the clean surface. An
important consequence from the electronic structure calculations is that, within the
single steps, the SA step can be formed easier, or at a smaller energy cost, than the
SB step

λ(SA) < λ(SB). (6.11)

This result predicts that the SB step should have many thermally excited kinks that
consists of segments of the SA steps, due to the small energy cost of the SA step.
The SA step, on the other hand, should not have such kink structures. The above
tendency is seen in STM images. As a reverse problem, the step formation energies
can be estimated, quantitatively, from the STM images [117]. The results are also
shown in Table 6.2. Similar analysis of the STM images is reviewed in Ref.[115].

(eV/2d) λ(SA) λ(SB) λ(DA) λ(DB)
Tight-binding [116] 0.02 0.30 1.08 0.10

Ab initio [118] 0.18 0.24 0.86 0.34
Experiment [117] 0.056 0.18 – –

Table 6.2: Step formation energies of the Si(001) surface. The upper and middle
columns give theoretical values from the electronic structure calculations. The lower
column gives the estimated values from the analysis of experimental STM images.
d ≡ 3.84Å.

Now we discuss that the anisotropic surface strain energy is also important in
determination of step structures [119]. The formation of surface dimers causes the
anisotropic surface strain in the dimer direction and the perpendicular direction. If
double steps appear dominantly, the resultant (001) surface are covered only with
the (2×1) domains, which accumulates the anisotropic strain energy. The situation
can be schematically shown as

· · || (2 × 1) || (2 × 1) || (2 × 1) || · ·, (6.12)

where the symbol ‘|| ’ denotes a double step. The presence of a single step flips
the anisotropic direction between the lower and upper layers. The resultant surface
is covered with (2 × 1) and (1 × 2) domains in the alternately phases between the
single steps, which will reduce the anisotropic strain energy. The situation can be
schematically shown as

· · | (2 × 1) | (1 × 2) | (2 × 1) | · ·, (6.13)

where the symbol ‘| ’ denotes a single step. See Refs.[120, 121] for the quantitative
discussion with ab initio calculations. The above discussion predicts that two single
steps (SA+SB) should be energetically favorable than a double step (DA or DB),
from the viewpoint of the relaxing the anisotropic surface strain energy.
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The energy data in Table 6.2 are calculated without the above strain relaxation
mechanism. Table 6.2 gives an inequality

λ(DB) < λ(SA) + λ(SB) < λ(DA), (6.14)

which predicts that the DB step can be formed easier than the two single steps
(SA+SB). The present prediction from Eq. (6.14) contradicts the previous prediction
from the strain relaxation mechanism. In results, the step formations are determined
by the competitive mechanism between the relaxation of surface strain energy and
the step formation energy. If the step interval, denoted as l, is infinitely long (l →
∞), the energetics will be governed by the surface strain and the two single step
should appear. In the opposite limit (l → 0), the energetics is governed by the step
formation energy and the double step should appear. Here we can expect a crossover
between the step interval l. Experimentally, the step interval can correspond to the
misoriented angle θ in the [110] direction from the ideal (001) surface. A theoretical
estimation gave the prediction of the crossover at θ ≈ 1.2◦ − 2.5◦ [119, 122]. In
experiments, with the miscut angle larger than about 1.5◦, double steps begin to
form and their fraction increases with increasing miscut angle toward a maximum
of nearly 100 % at 5-6◦ [115]. The corresponding STM images of the single-stepped
and/or double-stepped surfaces can be seen in many papers, such as Refs. [117, 122,
115].

Here we would like to point out the analogy between the present theory of step
structures and the Griffith theory of fracture explained in Section 6.1. The crossover
in this section can be expected from the dimensional analysis, because the step
formation energy is scaled as (length)1 and the surface strain energy is scaled as
(length)2. The corresponding critical length is that of the step interval. In the
Griffith theory, on the other hand, the critical crack length cG is obtained by the
energy competition between the surface formation energy, scaled as (length)2, and
the bulk strain energy, scaled as (length)3. The analogy is summarized in Table 6.3.
Within the atomistic picture, step formation and surface formation processes can be
commonly classified into ‘chemical’ processes in the sense that they are formed with
bond breaking and rebonding processes. The characteristic energy scale is written
as εchem, as in Section 6.1, of which values should be in the same order. On the other
hand, the energy scale of the strain energy εstrain should be much smaller than the
chemical energy (εstrain 
 εchem), though its actual values may be different among
the two cases. The dimensional analysis gives a critical length scale as

n ≡ εchem

εstrain
(6.15)

in the unit of the number of atomic layers. As a common feature, the chemical
energy is contributed by a small number of atoms with a large energy scale, while
the strain energy is contributed by a large number of atoms with a small energy
scale. In results, they are competitive in the total energy. For describing the above
competition, the atomistic simulation should be done with a sufficiently large system
size to contain the critical length of Eq. (6.15). We will discuss this point again in
the final chapter of the present thesis (Chapter 8).
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fracture step formation
Chemical energy (εchem) surface (2D) step (1D)
Strain energy (εstrain) bulk (3D,isotropic) surface (2D, anisotropic)

Critical length (n ≡ εchem/εstrain) crack length step interval

Table 6.3: The dimensional analysis of the energetics in fracture and step formation.
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7.1 Purpose

In this section, we describe the purpose of the present fracture simulations of silicon.
Here the same notations are used as in Section 6.1. We will focus on the dynamical
brittle fracture of nanocrystalline silicon under the external load in the [001] direc-
tion. The (001) surface is focused, because of its general importance in the nano
technology, as explained in Section 6.3. The results will be analyzed with quantum
mechanical freedoms. Especially, we will focus on the following issues;

(I) Dynamical fracture process; how and why the fracture path is formed and
propagate in the crystalline geometry. This issue should include the surface
reconstruction process.

(II) Fracture behavior of nanoscale samples; its possible difference from the macroscale
samples.

Hereafter we discuss the above two issues more clearly. First, the issue (I) is
discussed. Since fracture is a thermal non-equilibrium process, the atomic struc-
ture on a cleavage surface can be different from that on equilibrium clean surfaces,
which was discussed in Section 6.1. Moreover, when we try to construct a dynami-
cal description, two limiting pictures can be considered, as shown schematically in
Fig. 7.1. In the figure, the surface reconstruction is schematically drawn as surface
dimer formations. One limiting picture is the process of (A)→(B)→(C) and the
other is the process of (A)→(D)→(E)→(C). In the former process, the bond break-
ing processes and the surface reconstruction processes occur simultaneously. In the
latter process, the bond breaking processes ((A)→(D)→(E)) occur first, and, then,
the surface reconstruction processes ((E)→(C)) occur. In other words, the bond
breaking processes and the surface reconstruction process are separated in the time
scale.

Now we turn to discuss the second issue, the issue for the fracture of nanocrys-
talline silicon. As explained in Section 6.1, the Griffith theory is a kind of a dimen-
sional analysis and gives the critical crack length for fracture (cG). In the above
picture, the sample size (L) is larger than the above crack length cG (L > cG), as
in Fig. 6.1. Since the length cG is not dependent on the sample size L, the fracture
behavior can be expected to be different from the above picture in case that the
sample size L is smaller than the critical length cG (L < cG). In this chapter, we
will see such a situation in nanocrystalline silicon, in which the numbers of atomic
layers for these lengths (≈ cG/d0, L/d0) are not macroscale numbers. For example
(see the next chapter), the critical length is given by cG ≈ 100nm, while the sample
sizes are smaller than 20 nm (L ≤ 20nm). From the analogy with the theory of
nucleation, one can map the above nanoscale situation to the nucleation within a
confined space. Now one can expect a crossover among the system sizes between
the macroscale and nanoscale sample. Such a crossover has been already discussed
in Section 6.3 with the similar dimensional analysis of the theory of step structure
in the Si(001) surface.

The difference between nanoscale and macroscale samples can be discussed also
from a different viewpoint. In the continuum theory of fracture (See Appendix C.2),
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the effect of the crack tip is characterized by the singular stress field

σij ∝
1

r2
(r 
 c), (7.1)

where r ≡
√
x2 + y2. The point r = 0 corresponds to the crack tip. The singular

area is given by the assumption of r 
 c. The assumption of r 
 c is practical,
only when the crack length is much larger than the atomistic length scale (c� d0),
which may not be expected in nanoscale samples.

Finally, we discuss the initial structure and the boundary condition in the frac-
ture simulations. The choice of these conditions is important, because it will severely
restrict the resultant dynamics. In most atomistic simulations [109, 110, 103, 104],
simulations are done in ‘two-dimensional’ samples, in the sense that the simulation
cell is periodic in one direction. Moreover, samples have initial well-defined cleavage
planes. Unlike these works, we do not impose any periodicity and do not prepare
any initial crack plane, so as to discuss the above two issues (I) and (II). We will
investigate the fracture of clusters in different sizes, among 102-105 atoms, with an
external load in the [001] direction. We will compare the results among different
sample sizes. Though the (001) surface is not the easiest cleavage plane of macroscale
samples, macroscale fracture behaviors will appear, as a crossover, if the sample is
enough large. The present system sizes, up to 105 atoms, seem to be not enough
large for the observation of macroscale fracture behaviors, but the present result
contains a phenomena that is understood as the beginning of the crossover between
nanoscale and macroscale samples. The crossover will be discussed in Section 7.6.
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(A)

(B)

(C)

(D) (E)

Figure 7.1: Schematic picture of the two possible fracture processes that contains
bond breakings and surface reconstructions; (A) initial (crystalline) structure, (B)
intermediate structure with reconstructed surface, (C) the final (reconstructed)
structure, (D) intermediate structure with unreconstructed surface, (E) the ideal
(unreconstructed) structure. The surface reconstruction is schematically shown as
dimer formations.
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7.2 Basic properties of fracture simulation

Hereafter, in this chapter, we will present fracture simulations of nanocrystalline
silicon and will discuss the results. In this section, first, we discuss the conditions
of the simulation. Then, the fracture behaviors with a small sample is analyzed.
These fracture behaviors are seen almost commonly among all the samples in this
chapter.

Conditions of simulations

All the samples are isolated tetragonal clusters, whose geometries are labeled with
the number of atomic layers in three axes, such as n100×n010×n001 or n110×n11̄0×n001.
For fracture propagations, external loads in the [001] direction are imposed. Figure
7.2 shows the schematic picture of a sample. Here we define ‘top’, ‘bottom’ and
‘side’ surfaces of the sample as shown in Fig. 7.2. Note that the sample does not
contain an initial crack.

Figure 7.2: Schematic picture of a sample. The external load is shown as red arrows.

The Wannier states at all the sample surfaces are terminated by fixed sp3 bond-
ing states and are not reconstructed. The time step of the molecular dynamics is
3 fs. During the simulations, the external loads can be dynamically controlled by
the atoms on the ‘top’ and ‘bottom’ surfaces of the sample. The velocity is chosen,
typically, to be 10−2 km/s, which is much slower than that of observed fracture
propagation velocities (on the order of km/s). The total kinetic energy is controlled
to be that with 300 K by the Nosé thermostat method [123, 124]. Note that the
thermostat does not affect the essentials of the fracture dynamics, because the ther-
mostat controls the averaged kinetic energy among all the atoms in the sample (See
Appendix D.4), while the fracture occurs locally. Most of the simulations, a defect
bond is initially prepared, as a seed of fractures, in a central region of the samples.
The origin of the initial defect bond is a short range repulsive potential imposed on
one particular pair of atoms
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Fracture simulation with 91 atoms

We demonstrate the properties with a small sample, with 91 atoms, and the result
is shown in Fig. 7.3. The simulation is done by the exact diagonalization method.
Here two simulation details are explained; (i) The bonds in the figure are drawn
according to the atomic distance, only for an eye guide. Note that, later in this
chapter, we will draw the bonds, due to a quantum mechanical analysis of Wannier
states. (ii) Though the sample is quite small, the tetrahedral structure is well
preserved, even at the surfaces of the sample This is because the surfaces of the
sample are terminated by the Wannier states in sp3 bonding states. The present
boundary condition corresponds to the case in which the system is embedded in a
bulk crystal or a tetrahedral sp3-bonded network. If the surfaces of the sample were
terminated by hydrogen atoms, as usually done, the surfaces of the sample would
be deformed, due to the deviation from the sp3-bonded network.

Figure 7.3: Fracture simulation with 91 atoms using the exact diagonalization
method. Here the bonds are drawn, just for an eye guide, according to the in-
teratomic distance. The direction of the external load is set as the z axis.

Global property of fracture

Here we discuss the global properties of the fracture. The upper panel of Fig. 7.4
shows the stress at the ‘top’ or ‘bottom’ sample surface. The stress is measured
as the averaged force among the atoms on the sample surfaces. The lower panel
of Fig. 7.4 shows several eigen levels that lie near the highest occupied or lowest
unoccupied levels. At the time t = 0, we start imposing the external load. First
we discuss the stress, the upper panel of Fig. 7.4. The fracture begins at t ≈ 1.5
ps, when the stress is at its maximum value, and ends at t ≈ 2 ps, when the stress
becomes zero. A small non-zero stress is also seen at t ≤ 0, because the equilibrium
lattice constant in the present small sample is deviated from that in the bulk sample.
In the final state, as in the last snapshot of Fig. 7.3, the sample is completely divided
into two peaces.

Several important physical quantities appear in the upper panel of Fig. 7.4. (i)
The linear region of the stress, 0 ≤ t ≤ 1.5ps, should give the Young modulus E100,
since the ‘top’ or ‘bottom’ surface of the sample is controlled by the constant velocity
motion v0. Though the figure shows a large fluctuation in the stress, we estimated
the Young modulus to be E100 ≈ 100GPa, where the estimated value may include
an error on the order of 10 %. This value is comparable with the experimental value
E100 = 130 GPa (See B.1), Note that the calculated values of the elastic constants
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were discussed in Section 4.3 and the present calculated value should be deviated
from the bulk one, due to the small sample size. (ii) The critical stress of σ ≈ 2
GPa gives the critical length cG as cG ≈ 100 nm, from the discussion in Section 6.1.
Within the fracture simulation in this chapter, the fracture begins with the above
order of the stress, in which the averaged bond length is about 10 % longer than
the equillbrium value. As discussed in Section 6.1, the corresponding strain energy
(εstrain) is the order of σd3

0 ≈ 10−1 eV, which is smaller than the bond breaking energy
(εchem ≈ 1eV). Since the sample length L of the largest sample in this thesis will be
L ≈ 20 nm, the situation in this thesis is that of the nanoscale sample (L < cG),
as discussed in the previous section (Section 7.1). (iii) The period of the fracture
is estimated by T ≈ 2.0 − 1.5 ≈ 0.5 ps. The present sample with 91 atoms gives
the sample length of L ≈ 10 Å. From the above quantities, the crack-propagating
velocity vcrack is estimated as

vcrack ≈ L

T
≈ 10[Å]

0.5[ps]
≈ 10 × 10−10[m]

0.5 × 10−12[s]
≈ 2[km/s], (7.2)

which is almost unchanged among the fracture simulations in this chapter. The
above value is reasonable, because, as explained in Chapter 6, the experimental
value is less than but on the same order of the Rayleigh wave speed (cR = 4.5 km/s).
The above estimation of the physical quantities shows that the present simulation
gives reasonable results.

Here we discuss the electronic structure in the lower panel of Fig. 7.4. In the
figure, the highest occupied and lowest unoccupied levels are plotted as the red and
blue lines, respectively. They are isolated levels in the band gap and their physical
origin is the bonding and antibonding states of the initial defect bond. Hereafter
we define ‘defect’ states, generally, as the electronic states that do not appear in the
crystalline structure. The present definition of ‘defect’ states includes surface states,
as well as states in a point defect. During the fracture (1.5 ps ≤ t ≤ 2 ps), the level
crossings are seen among several ‘defect’ levels within the band gap. Especially,
the level crossing between the highest occupied and lowest unoccupied levels, red
and blue lines in Fig. 7.4, corresponds to the vanishing of the electronic energy
gap. This is quite understandable, because the covalent bonding is stabilized by the
energy gap between bonding and antibonding states. If the energy gap vanishes,
there is no reason to form a bonding state. The above level crossing mechanism
should be distinguished from the band overlap between the continuum (valence and
conduction) bands. In the final structure, these ‘defect’ states are transformed into
the surface band. Due to the presence of the surface band, the electronic energy gap
in the final structure is less than that of the initial crystalline structure. In short, the
change of electronic structure in Fig. 7.4(b) is interpreted as the change of ‘defect’
states, from two isolated states into a surface band. The change in the electronic
structure directly corresponds to the fracture from the initial defect bond into an
cleaved surface. One may be interested in the simulation without the initial defect
bond. Such simulation will be discussed in the next section with larger samples.
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Figure 7.4: Fracture simulation using the exact diagonalization method. The sample
contains 91 atoms, of whose geometry is given in Fig. 7.3. The surface stress (upper
panel) and several eigen levels (lower panel) are plotted as a function of the time.
In the eigen levels, the highest occupied or lowest unoccupied levels are plotted as
the red and blue lines, respectively.
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Elementary process

Here we describe the elementary fracture process that includes the bond breaking
and surface reconstruction processes. Figure 7.5 shows a typical elementary process
of a Wannier state |φi〉, in which we monitor the one-electron energy εi ≡ 〈φi|H|φi〉
and the weight of s orbitals f (i)

s defined in Eq. (3.9). The origin of the time (t = 0)
is chosen as the time when the energy εi has its peak. The time t = 0 corresponds
to the time of bond breaking, as discussed below. A schematic picture of the pro-
cess is shown in Fig. 7.6; (a) bulk structure → (b) unreconstructed surface → (c)
reconstructed surface. Small filled circles or solid lines are atoms or bonds that lie
in this plane. Small open circles or dashed lines are atoms or bonds that do not lie
in this plane. Large open circles are atomic lone pair states. Figure 7.6(d) shows the
related energy levels, which is almost the same as in Fig. 5.10. Only one difference
between Figs 7.6(d) and 5.10 is the fact that, in Fig. 7.6(d), the sp3 bonding level
indicates the energy of the bulk Wannier state (εWS = −5.08eV). Before the bond
breaking (t < 0 ps), the wave function |φi〉 is a bonding state in the bulk region,
deformed due to the external load. At t ≈ 0 ps, a bond breaking occurs; the wave
function |φi〉 loses the bonding character with rapid increase of the bond length.
Then (0 ps<t<0.2 ps), the wave function is transformed into a lone pair state local-
ized on one atom, since another bond is broken almost simultaneously at one of the
nearest neighbor bond sites. In result, a two-fold coordinated atom appears, as in
unreconstructed surfaces, which is shown schematically in Fig. 7.6(a)→(b). Within
the above process (0 ps<t<0.2 ps), the increase of f (i)

s (0.6→0.8) causes the energy
gain estimated to be −0.2×(εp−εs) ≈ −1.3eV, which explains the energy gain in
the figure (εi = −2.7eV → −3.8eV). This can be classified into a dehybridization
process, as explained in Section 3.2. Finally, after the thermal motions with a fi-
nite time (t ≈ 0.4ps), a pair of two-fold coordinated atoms forms an asymmetric
dimer with a σ bonding state |φi〉, which is shown schematically in Fig. 7.6(b)→(c).
The resultant asymmetric dimer was discussed in Section 3.2. The corresponding
covalent-bonding energy, defined in Eq. (3.20), is ∆ε

(cov)
i ≈ −1.9 eV. This energy

explains the gain in the figure (εi =−3.8eV → −4.8eV) and the energy loss (about
1.3eV) due to the decrease of f (i)

s (0.8 → 0.6). This asymmetric dimer is preserved
until the end of the simulation, during a couple of pico seconds. In conclusion, the
reconstruction process is decomposed into two stages; (i) the formation of two-fold
coordinated atoms or an unreconstructed surface, (ii) the formation of a reconstructed
surface dimer. The above two-stage reconstruction process is commonly observed in
the present fracture simulations.
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Figure 7.5: Wannier state in the elementary bond breaking and surface reconstruc-
tion process; The one-electron energy εi ≡ 〈φi|H|φi〉 and the weight of s orbitals f (i)

s

are plotted as functions of time.

 
 

Figure 7.6: (a) (b) (c) The schematic pictures in the elementary bond breaking and
surface reconstruction processes; (a) crystal structure, (b) unreconstructed surface
and (c) reconstructed surface. (d) Several energy levels of the Wannier state (See
Fig. 5.10).
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Figure 7.7 shows the calculation of the total density of state (DOS) Dtot(ε) and
the partial density of states Di(ε) for the above-discussed Wannier state |φi〉. In
Fig. 7.7, the snapshot (a) is that before the bond breaking (t = −0.1ps) and (b) is
that just on the bond breaking time (t = 0). The total and partial DOS are defined
as

Dtot(ε) ≡ −1

π
lim
ε0→0

Im Tr
[

1

H + iε0

]
(7.3)

Di(ε) ≡ −1

π
lim
ε0→0

Im〈φi|
1

H + iε0
|φi〉. (7.4)

The practical calculations are done by the explicit matrix inversion with a finite
value of ε0. In result, the total DOS profile changes its character with the creation
of a ‘pseudo gap’ in the energy region slightly higher than the chemical potential.
This corresponds to the formation of surface dimers, which stabilized the electronic
structure energy. Such a stabilization mechanism is commonly observed in covalent
materials, as explained above. Except the creation of the ‘pseudo gap’, however,
the total DOS is not significantly changed between the two snapshots, since the
fracture occurs locally and the rest part of the system keep the character of the bulk
electronic structure. A drastic change is seen in the partial DOS Di(ε) between the
two snapshots. In the snapshot (a), the partial DOS is distributed among almost
all the energy range of the occupied levels, which is a typical character of the bulk
Wannier state. In an ideal diamond crystal, all the bond sites are symmetrically
equivalent and the partial DOS of a Wannier state is proportional to the DOS of the
valence band. In the snapshot (b), on the other hand, the partial DOS has the main
sharp peak near the atomic sp3 level (εh=-0.4eV). The sharpness of the peak implies
that this wave function should be similar to the eigen state of an sp3 dangling bond
orbital. The partial DOS has also a sharp peak at a low energy region near the
atomic s level (εs=-5.45eV). The contribution of such a low energy atomic level is
essential for the dehybridization mechanism in the present elementary process, as
discussed above.

-15 -10 -5 0 5 1010-15 -10 -5 0 5

Figure 7.7: Total DOS D(ε) and Partial DOS for the Wannier state Di(ε) in the
course of the bond breaking process described in Fig. 7.5. The snapshot (a) is a
snapshot before the bond breaking (t = −0.1ps) and (b) is that just on the bond
breaking time (t = 0). The chemical potential is indicated as the red arrows.
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Here we emphasis the crucial importance of the quantum mechanical freedoms in
the above process. The importance can be seen in the fact that the bond breaking
do not occur at a single bond site, but occur at two successive bond sites. The
bond breaking at a single bond site is quite difficult to occur, because the resultant
single dangling bond state would be quite instable. The bond breaking at successive
two bond sites, on the other hand, is easy to occur, because the resultant two-fold
coordinated atom can have a atomic lone pair state and can be stabilized by the
dehybridization mechanism. The importance can be also seen in the fact that the
peak value of εi, the value at t = 0 in Fig. 7.5 is not unique among the Wannier
states in the fracture process. The peak value is affected by the other Wannier
states |φj〉 under the orthogonality constraint. The importance of the orthogonality
between the Wannier states can be seen in the following fact of Fig.7.6(d); the atomic
s level (εs = −5.45eV) is lower than the energy level of the bulk Wannier state (εWS =
−5.08eV). This fact means that the bulk Wannier state |φi〉 at ε = εWS would occupy
immediately the atomic s orbital, if it was vacant. In summary, the elementary
fracture process is described by the energy competition among several Wannier states
and the essential quantum mechanical freedoms are the dehybridization mechanism
and the orthogonality constraint.
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7.3 Effect of dehybridization mechanism

From the analysis in the previous section (Section 7.2), we found that the dehy-
bridization mechanism is essential for the elementary fracture process. In this sec-
tion, we will clarify the importance of the dehybridization mechanism using the
comparison with an artificial material.

Preparation of artificial material

The artificial material is given by a modified tight-binding Hamiltonian of silicon.
The modification is done by tuning the difference of the atomic p and s levels to be
zero (εp − εs = 0). The corresponding metallicity parameter is given by αm = 0.
All the other parameters in the tight-binding Hamiltonian are the same as that in
the silicon case. We have discussed, in Chapter 3, that such a parameter tuning
reproduces the variety among the group IV elements within the universal tight-
binding theory. The artificial material is a semiconductor with sp3 bonding states.
The values of the band gap and the band width are comparable to those in silicon,
as is seen below. The weight of s orbital is fs = 0.247 in the bulk state, which means
an almost ideal sp3 hybridization. The crucial difference of the artificial material
from silicon is the lack of the dehybridization mechanism. Since the dehybridization
mechanism originates from the energy gain due to the increase of s component, such
mechanism can not be seen in the artificial material because of εp−εs = 0. We
will see that the lack of the dehybridization mechanism is crucial for the simulation
result.

Silicon case (‘617A’ sample)

Before the comparison, we discuss the silicon case. So as to eliminate the numerical
error of the order-N method, the exact diagonalization is used here. The sample is
cubic with 617 atoms, which is a larger sample than that in the previous section.
Unlike in the previous section, the present sample does not contain the initial defect
bond. The present sample is referred to ‘617A’ sample. The results of the fracture
simulation are shown in Fig. 7.8 and Fig. 7.9. The time t = 0 corresponds to the
beginning of imposing the external load. The fracture begins at t ≈ 4.5ps and the
sample is divided into two peaces. The final structure will be shown later in this
section. Figure 7.8 shows the eigen energies near the highest occupied or lowest
unoccupied levels. Figure 7.9 shows the surface stress and the eigen energies as the
function of time. Unlike the figures in the previous section, here we plot all the eigen
levels in the lower panel of Fig. 7.9. At the initial structure, the highest occupied
and lowest unoccupied levels locate at by ε ≈ 0eV and ε ≈ 1.3eV, respectively.

Now several comments are added; One may find another energy ‘gap’, in a lower
energy region (−8eV ≤ ε ≤ −7eV). This ‘gap’, however, is due to the finite size
effect and is not essential. One may observe a global property of the sample in
Fig. 7.9; the band widths of the valence and band bands decrease with increasing
the external load before the fracture (t < 4.5ps) but turn to increase after the
fracture This is understandable as follows; In general, a band width is determined
by the transfer integral. If a lattice is deformed with a longer lattice constant, the
transfer integral and the band width will decrease.
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Here we discuss the electronic structure in the present fracture simulation. Though
the initial defect bond is not prepared in this sample, several ‘defect’ levels within
the band gap can be found in the initial structure. They are separated from the
continuum valence or conduction band. These ‘defect states’ should originate from
the sample surfaces. When the fracture begins at the critical external load, on the
order of GPa, the electronic energy gap vanishes. After the fracture, an electronic
energy gap appears again with a smaller value than that of the initial structure. The
energy gap of the final structure corresponds to that in the surface band. Since the
microscopic pictures are the same in the previous section, we do not repeat them
here.

Figure 7.8: Selected eigen energies in the ‘617A’ sample as the function of time. The
highest occupied and the lowest unoccupied levels is plotted as the red and blue lines,
respectively. Several levels near the highest occupied and lowest unoccupied levels
are plotted as (colored) lines. The other levels are plotted as dots.

Comparison with artificial material (‘617B’ sample)

The fracture simulation of the artificial material, or the modified Hamiltonian, is
done with the same sample geometry as the silicon case (‘617A’ sample). This
sample of the modified Hamiltonian is referred to ‘617B’ sample. The simulations
of the ‘617A’ (silicon) and ‘617B’ (artificial material) samples are done with the
same conditions except the modification of the tight-binding parameters. Figure
7.10 shows the resultant final structures of the silicon case (a) and the modified
Hamiltonian case (b). Unlike the silicon case, the artificial material is not divided
into two peaces, but shows a formation of a disordered or amorphous region. Figure
7.11 shows the dynamics of forming an amorphous region. The results in the ‘617B’
sample are shown in Fig. 7.12 and Fig. 7.13, which are compared with those in the
‘617A’ sample, Fig. 7.8 and Fig. 7.9, respectively. One may find a difference between
the two materials, as the fact that the stress values at t = 0 in the ‘617B’ sample
is deviated from zero. This is because the equilibrium bond length is different from
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the silicon case, which is not essential for the fracture behavior. Figure 7.13 shows
the surface stress and the eigen energies, as the functions of time. The artificial
material has a finite energy gap that is comparable to that of the silicon case. When
the fracture begins, the surface stress is given on the order of GPa, and the electronic
energy gap almost vanishes. In the final structure, an electronic energy gap appears
but is smaller than that of the initial structure. All the above features in the eigen
energy levels is quite similar to those in the silicon case, in Fig. 7.9.

Hereafter we will discuss why the two cases differ in the final structures, though
they are similar in the stress and the eigen-value distribution. The creation of a
cleaved surface and a local amorphous region can be understood by the dynamical
structural changes so as to release the bulk strain energy. The releasing the bulk
strain energy can be seen commonly in the lower panel of Fig. 7.9 and Fig. 7.13, as
recovering the band width after the stress has its peak. The difference of the two
cases is the presence or the absence of the stability mechanism of a cleaved surface.
In the silicon case, as explained in Fig. 7.5, an two-fold coordinated atom appears
after the bond breaking. The two-fold coordinated atom is stabilized by the dehy-
bridization mechanism, or the increase of s components (fs). This dehybridization
mechanism is essential, because the atomic level difference (εp − εs) is so large to
be comparable with the bond breaking energy (2|β0|). In the present artificial ma-
terial, on the other hand, the atomic level difference is zero (εp − εs = 0) and an
unreconstructed surface cannot be stabilized by the dehybridization mechanism.

The present comparison shows the essential role of the dehybridization mech-
anism in the present brittle fracture of silicon, which is seen as the fact that the
brittle fracture does not occur in a system without the dehybridization mechanism.
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Figure 7.9: The stress and all the eigen energies in the ‘617A’ sample as the function
of time. All the energy levels are plotted as dots.
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Figure 7.10: The final structures of (a) the silicon case (‘617A’ sample) and (b) the
modified Hamiltonian (‘617B’ sample). Here the bonds are drawn, just for an eye
guide, according to the interatomic distance.
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Figure 7.11: Snapshots of the dynamical fracture simulation of the ‘617B’ sample
with 617 Si atoms. The time interval between successive two snapshots is ∆t = 0.3
ps. Here the bonds are drawn, just for an eye guide, according to the interatomic
distance.
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Figure 7.12: Selected eigen energies in the ‘617B’ sample as the function of time.
The plotting manner is the same as in Fig. 7.8.
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Figure 7.13: The stress and all the eigen energies in the ‘617B’ sample as the function
of time. The plotting manner is the same as in Fig. 7.9.
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7.4 Technical details of the dynamical simulation

Here we discuss several technical details of the large-scale simulations that will be
done in the rest of this chapter. The fundamental theory for large-scale simulations
was discussed in Chapter 4 and 5. This section explains additional details, especially,
details for dynamical simulations. Two points are mainly discussed.

Dynamical control of localization region for Wannier state

The first point is how the localization region for each Wannier state is determined in
the variational order-N method, which governs the balance of the accuracy and the
computational costs. As a test calculation, we calculate fracture simulations of a
small system size (91 atoms) using different controlling methods. Figure 7.14, show
the stress value, so as to monitor the accuracy of the simulation methods.

Figure 7.14: The stress value in the fracture simulations with different methods;
Exact diagonalization methods with different temperature parameters in the Fermi-
Dirac form are denoted as ‘Exact Diag. (1)’ and ‘Exact Diag. (2)’ . The variational
order-N method with the constant cutoff radius for the localization constraint is
denoted as ‘Order-N (CC)’. The variational order-N methods with the flexible cutoff
radius are denoted as ‘Order-N (FC1)’ and ‘Order-N (FC2)’, whose difference is
discussed in the text.

We calculate the exact matrix diagonalization method as reference data. When
the fracture occurs, the electronic energy gap vanishes, as seen in the previous
sections. In the exact diagonalization method, the density matrix is given by the
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fractional occupation with a finite temperature form

ρ̂ =
∑
k

|φ(eig)
k 〉 fk(εk) 〈φ(eig)

k |, (7.5)

where the wave functions {φ(eig)
k } are eigen states with eigen energies ε

(eig)
k . The

occupation number fk(ε
(eig)
k ) is given by a Fermi-Dirac function with the chemical

potential µ and a temperature parameter τelec

fk(εk) =
1

1 + e(εk−µ)/τelec
. (7.6)

The temperature parameter τelec is usually chosen for the numerical stability and
is not necessarily equal to the temperature of the system. We achieve the exact
diagonalization calculations with the different electronic temperatures; the case with
τelec = 0.1[eV] is denoted as ‘Exact Diag. (1)’ in the figure, while that with τelec =
0.01[eV] is denoted as ‘Exact Diag. (2)’ .

We also calculate using the variational order-N method with different localization
constraints. As explained in Section 4.3, we should control only the cutoff radius
r

(cut)
i for each Wannier state |φi〉. We calculate with several controlling methods of

the cutoff; the constant cutoff (CC), the flexible homogeneous cutoff (FC1) and the
flexible inhomogeneous cutoff (FC2), which will be explained below. The resultant
stress values are shown in Fig. 7.14 with the symbols ‘(CC)’ , ‘(FC1)’ and ‘(FC2)’.
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Figure 7.15: The fraction of the Wannier states with the ‘middle’ or ‘large’ cutoff
radius. This quantity is used in the ‘flexible inhomogeneous cutoff’ method, which
is denoted as ‘(FC2)’ in Fig. 7.14.

Here we explain the above three cutoff methods in the variational order-N meth-
ods. In the initial sample without deformations, we choose the perturbative Wannier
state as the initial state of the variational order-N method. Since the perturbative
Wannier state extends over 20 atoms, as shown in Fig. 5.7, the cutoff radius should
be, at least, enough large to contain these atoms. In the above case of the constant
cutoff (CC), we choose the cutoff radius as the constant value of r

(cut)
i = 2.5d0,

where d0(= 2.35Å) is the equilibrium bond length. This value is chosen for all
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Wannier states through the simulation. Without an external load, this cutoff sets
the localization region of the Wannier states to about Nloc = 40 atoms. We should
say, however, that the choice of the constant cutoff method is not appropriate in
the present fracture simulation. In the present fracture simulation, the sample will
be stretched by the external load. In other words, the system will be somewhat
dilute and the number of atoms within a Wannier state will decrease, if a constant
cutoff is used. A better way is to control the number of atoms in the localization
region, not the radius in the distance r

(cut)
i . Since the computational cost in the

present tight-binding calculation is determined by the number of atoms, not the
spatial volume, the computational cost will be not significantly changed with the
above controlling method. We call such methods as ‘flexible homogeneous cutoff’
method, referred as ‘(FC1)’ in Fig. 7.14. In this method, the cutoff radius r

(cut)
i is

chosen so that the localization radius contains, at least, a finite number of atoms
(N

(c)
loc ). We choose the value N

(c)
loc = 40 in the ‘(FC1)’ case in Fig. 7.14. The word

‘homogeneous’ is used, because the unique minimal number of atoms (N
(c)
loc ) is used

among all Wannier states. In results, the cutoff radii r
(cut)
i may be different among

the Wannier states but the number of atoms within the localization region (N i
loc)

always satisfy N
(i)
loc ≥ N

(c)
loc = 40. Now we explain the third method. In the present

fracture simulation, the Wannier states only near the cleavage area are significantly
changed. Especially at the beginning of the fracture, the electronic band gap is
vanished and the localization constraint should be relaxed so as to reproduce the
physical quantities. We can monitor the error (|δφi|) of a Wannier state from its
exact solution, as explained in Section 5.2. Using the above values, we can set dif-
ferent minimal atom numbers N

(c)
loc among different Wannier states. We call such

methods as ‘flexible inhomogeneous cutoff’, which is denoted as ‘(FC2)’ in Fig. 7.14.

Here we prepare three minimal atom numbers, that is, N
(c1)
loc ≡ 40 for ‘small radius’

, N
(c2)
loc ≡ 60 for ‘middle radius’ , N

(c3)
loc ≡ 80 for ‘large radius’. We also define the

average of the errors among the Wannier states;

δφav ≡ 1

N

∑
i

|δφi|. (7.7)

If the error of a Wannier state (|δφi|) is almost the same as its averaged value (|δφi| ≤
1.2δφav), we require the minimal atom number for ‘small radius’ (N

(i)
loc = N

(c1)
loc ≡ 40)

to the Wannier state . If the error of a Wannier state (|δφi|) is slightly larger than
its averaged value (1.2δφav ≤ |δφi| ≤ 1.5δφav), we require the minimal atom number

for ‘middle radius’ (N
(i)
loc = N

(c2)
loc ≡ 60) to the Wannier state. If the error of a

Wannier state (|δφi|) is larger than 150 % of its averaged value (1.5δφav ≤ |δφi|),
we require the minimal atom number for ‘large radius’ (N

(i)
loc = N

(c3)
loc ≡ 80) to the

Wannier state. Fig. (7.15) shows the fraction of the number of Wannier states that
are required the minimal atom numbers for ‘middle’ or ‘large’ radii. We plot the
period 9ps < t < 12ps, in which the fracture begins. From the figure, we observe
that the ‘middle’ cutoff (N

(c2)
loc ) is required to less than 10 % among all Wannier

states and the ‘large’ cutoff (N
(c3)
loc ) is required to less than 3 % among all Wannier

states. The increase of the computational cost due to the requirement of the ‘middle’
or ‘large’ radius is not serious in the total cost.

Here we compare the resultant stress by these five methods, shown in Fig. 7.14.
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In Section 7.2, we derived three important physical quantities; (i) the Young mod-
ulus, from the gradient in the linear (small load) region, (ii) the critical stress for
fracture, from the peak value, (iii) the fracture propagation speed, from the be-
ginning and the end of the fracture. If one estimate these values from the graphs
of the different methods, no significant difference is obtained. Though the above
agreement is satisfactory for the discussion of the fracture mechanism, we exam-
ine here the difference extensively. We replot Fig. 7.14 with finer scales, which are
shown in Figs.7.16 and 7.17. Figure 7.16 shows the stress within a region of small
external load, Here we can see that, if we delete the data of the constant cutoff
(CC) method, in (b), the trajectories among the other four methods will be in a
better agreement. In other words, the flexible cutoff methods, denoted ‘FC(1)’ and
‘FC(2)’, are better controlling methods than the constant cutoff method. Moreover
we can see in Fig.7.16(b) that the two flexible cutoff methods are indistinguishable
in the trajectories. The two diagonalization methods are also indistinguishable in
the trajectories. Figure 7.17. shows the stress in a region of small external load. We
compare the four method except the constant cutoff method. We can see that no
significant difference is found in the trajectories of the two diagonalization methods,
as in Fig.7.16(b). The difference of the critical external load or the time for the
beginning of fracture is due to the local fluctuation, which is not essential for the
fracture theory. The same conclusion can be applied to the two order-N methods.

In summary, we have tested three controlling methods for localization constraints
in the variational order-N method; the constant cutoff (CC) method, the homoge-
neous flexible cutoff (FC1) method and the inhomogeneous flexible cutoff (FC2)
method. The latter two methods are slightly better than the former one, though it
is not significant in the results of the present fracture simulation. Since this test is
only one example, we do not make a general conclusion for the controlling methods.
The important point is that we provide the practical methods for controlling the
accuracy and the computational costs.

Figure 7.16: The stress value in the fracture simulations with different methods; All
the data are the same as in Fig. 7.14 but are plotted with different scales on the
axes. The two graphs are plotted with (a) and without (b) the constant cutoff (CC)
method.
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Figure 7.17: The stress value in the fracture simulations with different methods; All
the data are the same as in Fig. 7.14 but are plotted with different scales on the
axes. The graph is plotted without the constant cutoff (CC) method.
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Dynamically-controlled hybrid scheme

The second point is the hybrid scheme in the dynamical simulation. In the fracture
simulations with 104 atoms or more (Section 7.6), we use the hybrid scheme between
the variational and perturbative order-N methods. In systems smaller than the
above size (Section 7.5), the variational procedure is used in the whole region. As
explained in section 4.4, the hybrid scheme works well by dividing Hilbert space. One
technical point in the practical molecular dynamics is how to define the subsystem
or how to select the member of the Wannier states treated in the variational method.
In the fracture simulation, the variational method should be used only for selected
Wannier states near fracture regions. During the fracture simulation, some of the
variational Wannier states change their character dynamically from the bulk (sp3

bonding) states to surface ones, as discussed before. The other wave functions, in
bulk regions, keep the character of the bulk bonding state and can be obtained by
the perturbative method.

In our program code, the member of the selected Wannier states can be dynam-
ically controlled. We call the method ‘dynamically-controlled hybrid scheme’. In
the dynamical scheme, the treatment of one Wannier state can be switched from
the perturbative method into the variational method. This switching is a ‘one-way’
algorithm. The present program code does not contain the ‘reverse’ switching, the
switching from the variational method into the perturbative method. The ‘reverse’
switching will be discussed later. Now we restrict the switching to the switching
from the perturbative method into the variational method. The switching is simply
done by setting the perturbative wave function as the initial wave function for the
iterative procedure in the variational method. Such a switching means the redef-
inition of the subsystems ρA and ρB ≡ ρ − ρA, which is well-defined in quantum
mechanics and is automatically done in the program code. The algorithm is con-
trolled by the criterion of the switching. The switching of a Wannier state φi should
be done, when the perturbative treatment is broken down. A good quantity for the
criteria is the weight of the non perturbative term, |C0|2 in Eq. (5.24). This value
should be nearly equal to one (|C0|2 ≈ 1) for the justification of the perturbative
treatment. In the bulk crystal, the value of |C0|2 is |C0|2 = 0.94. Here we denote
the weight as wi ≡ |C0|2 for the i-th Wannier state φi. During the simulation with
an external load, the value will decrease, due to the deformations. For the switching
into the variational treatment, we can set a critical value wc for the weight wi as the
lower limit for the perturbative treatment (wi > wc). In general, an universal value
for the criteria is not a good choice, because the value in the bulk case, wi = 0.94 in
the present silicon case, varies among the materials. A good reference for the critical
value is the averaged value wav among the weights of the perturbative Wannier states
{wi}i. The critical value can be set, for example, as wc = 0.95wav. Such a choice is
reasonable, because the variational treatment should be done on the Wannier states
in a local region with large deformations. The fracture will begin at such a local
region.

Figure 7.18 shows an example of the dynamically-controlled hybrid scheme, in
which selected Wannier states are plotted as atomic pairs of red balls. The sample
contains 4501 Si atoms and one initial defect bond. The external load is imposed,
but the fracture has not yet occurred. The figure is plotted in the following manner;
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In the initial structure, or in the ideal crystalline geometry, all the Wannier states
are treated in the perturbative method. The corresponding figure should contain
no red ball. During the simulation with the [001] external load, a pair of red balls
should appear in the figure, if one Wannier state is switched into the variational
treatment. In Fig. 7.18, we observe a region of many red balls inside the sample,
which is a region near the initial defect bond. This is because a large deformation
is introduced in this region, due to the presence of the initial defect bond. The
corresponding Wannier states are fairly deviated from bulk ones. We also observe a
region of many red balls near the sample edges. This is because the corresponding
Wannier states, those near the sample edges, are deviated from bulk ones, due to
the difference of the environment. The above selection of the variationally treated
Wannier states is quite reasonable, because the regions near the initial defect bond
and near the sample edges are the candidates for the fracture seed. We will see
the fracture simulation of this sample, in Section 7.5, using the variational method
for all Wannier states. In results, the fracture begins at the initial defect bond,
if it is contained. If not, the fracture begins at bond sites at the sample edge. In
short, the dynamically-controlled hybrid scheme is done with the switching from the
perturbative treatment into the variational one. The switching procedure is done
automatically with a reliable threshold for each Wannier state.

Figure 7.18: Top (a) and three-dimensional (b) views of selected Wannier states for
the variational treatment in the dynamically-controlled hybrid scheme. The sample
contains 4501 atoms and the sample edges are plotted as lines. A selected Wannier
states is plotted as an atomic pair of red balls. Other atoms are invisible. The
figures are plotted in the ideal crystalline geometry for an eye guide, though the
actual sample is deformed with an external load in the [001] direction.

Though the dynamically-controlled hybrid scheme works fine in the above ex-
ample, we do not use the scheme in the practical fracture simulations in this thesis,
One practical problem for large-scale simulations is the limitation of the built-in
memory size. In the variational method, unlike the perturbative method, the wave
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function of the Wannier state should be stored in the memory. If one Wannier
state is switched into the variational treatment, the required memory size will in-
crease so as to store the Wannier states. In fracture simulation, as explained above,
the number of the variationally treated Wannier states will increase with fracture
propagation. If the built-in memory size is not enough large, the simulation has
a possibility to exceed the limitation of the built-in memory size. Of course, the
possibility depends on the balance of the sample size and the hardware environment.
The dynamically-controlled hybrid scheme will be used in different systems and/or
different hardwares. Another problem in the present dynamically-controlled hybrid
scheme is the lack of the ‘reverse’ switching, the switching from the variational
method into the perturbative method. The ‘reverse’ switching may be important,
for example, in the simulation of crystal growth, because the number of Wannier
states in the bulk (sp3) bonding character will increase due to the crystal growth.
It is also noteworthy that the switching from the variational method into the per-
turbative method will save the required memory size. A practical algorithm for the
‘reverse’ switching is one of future works.

Other technical details

Finally, we explain several tips that are used in the present hybrid scheme for better
numerical results; One is the correction of the absolute value of the total energy.
The one-electron energies of the perturbative wave function φPT

i are slightly different
from those of the variational wave function φVR

i . Its typical values is less than 0.1
eV, as explained in Section 5.5. The above difference

∆εi ≡ 〈φPT
i |H|φPT

i 〉 − 〈φVR
i |H|φVR

i 〉 (7.8)

may cause a discontinuity of the absolute value of the total energy, when the wave
function is switched from the perturbative treatment into the variational one. To
avoid the discontinuity, we correct the absolute value of the total energy ∆εi, when
the switching occurs. This correction is made only for the absolute value of the
total energy, which does not affect any atomic or electronic structure. Another tip
is the correction of the equilibrium bond length. As discussed in Section 4.3, the
equilibrium bond length in the perturbative method is slightly deviated, by about
2 % from the correct value. If the hybrid scheme, the above difference may cause
an artificial lattice mismatching between the regions of variational and perturbative
Wannier states. We correct this problem by introducing an additional (classical)
potential on the atomic pairs that are the centers of the perturbative Wannier states.
If the switching occurs for one Wannier state, the corresponding additional potential
will be vanished, which is automatically done in the program code. The above
correction is reasonable, though no detailed investigation is made for the actual effect
on the present fracture theory. From a general viewpoint, the lattice mismatching
of 2 % is not negligible in some cases. For example, the lattice constants between
silicon and germanium differ only by 4 %. The above difference is crucial, when one
discuss the Si/Ge interfaces.
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7.5 Fracture simulation with thousands of atoms

In the present and next sections, we present and analyze fracture simulations with
larger samples. We will focus on the reconstructed structures on the cleaved surface,
which can not be discussed in smaller samples. This section describe the sample with
4501 atoms. The sample is a cubic cluster that is labeled, by the number of atomic
layers, as nx×ny×nz = 33×33×33. The sample size in the length scale is given
as Lx ×Ly ×Lz = 4.344 nm×4.344 nm×4.344 nm. Simulations are done by the
following conditions. Within the atoms on the ‘top’ or ‘bottom’ sample surfaces,
the z component of their motion is under the constraint of the constant-velocity
motion, as in Fig. 7.3. No other constraint is imposed on atomic motions. Two
samples with 4501 atoms are simulated. One is the sample with the initial defect
bond, which is denoted as ‘4501A’ sample. The other is the sample without the
initial defect bond, which is denoted as ‘4501B’ sample.

Here a quantum mechanical analysis will be done in the simulation results. As
discussed in Section 7.2, the elementary fracture process accompanies the two-stage
reconstruction process of Wannier states. To observe such elementary processes, all
the Wannier states are classified into bonding orbitals or atomic orbitals, according
to the weight distribution among atoms. The bonding orbital is shown as a rod,
while the atomic orbital is shown as a ball. Moreover, we use the color for the
further analysis. For bonding states, the black rods are the reconstructed bonds
that are not seen in the initial (crystalline) structure, while the white rods are the
bulk bonds that are seen in the initial structure. For atomic states, the colors of the
ball correspond to the weight of the s orbitals (f (i)

s ); (i)0 ≤ f (i)
s ≤ 0.2 for the blue

ball, (ii)0.2 ≤ f (i)
s ≤ 0.3 for the cyan ball, (iii)0.3 ≤ f (i)

s ≤ 0.4 for the white ball,
(iv)0.4 ≤ f (i)

s ≤ 0.5 for the green ball, (v)0.5 ≤ f (i)
s ≤ 0.6 for the yellow ball and

(vi)0.6 ≤ f (i)
s ≤ 1 for the red ball, respectively. Note that the bulk bonding state

gives the value of f (i)
s = 0.36.

Sample the initial defect bond (‘4501A’sample)

Figures 7.19, 7.20, 7.21, 7.22 show the result of the ‘4501A’ sample, the sample with
the initial defect bond. In the final structure, the sample contains a (001) cleavage
plane atomistically flat except the area near the sample surfaces. We also observe,
in Figs.7.21 and 7.22, that the atomic layer with the initial defect bond has grown
as the cleavage plane.

The resultant cleavage surface contains many asymmetric surface dimers that
have red or yellow balls, which corresponds to Fig. 3.2 in Section 3.2. Such a ball
corresponds to the atomic ‘π’ state localized on the ‘upper’ atom with a high value
of fs, as explained in Section 7.2. The resultant cleavage surface also contains many
two-fold coordinated atoms that have two back bonds (white rods) and a lone pair
atomic state (ball). This is because the two-fold coordinated atoms are metastable,
as explained in Section 7.2. Since the present fracture simulation is a thermally
non-equilibrium dynamics within a few pico seconds, such a metastable atom can
be preserved until the end of the simulation.
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Sample without the initial defect bond (‘4501B’sample)

Figures 7.23, 7.24, 7.25, 7.26 show the result of the ‘4501B’ sample, the sample
without the initial defect bond. As we see in Fig. 7.23, the fractured sample contains
two cleavage planes. In Fig.7.25, we observe, as in the ‘4501A’ sample, the formation
of an atomistically flat (001) surface with many asymmetric dimers except the areas
near the sample boundary surfaces. Figures 7.25, 7.26 show the fracture dynamics.

As a crucial difference from the sample with the initial defect bond (the ‘4501A’
sample), the fracture begins at two points on the sample edges in the present sample
(the ‘4501B’ sample). This is reasonable, when we think, as a general tendency, that
a sample edge region should be mechanically weaker than a bulk region. Within the
present simulation, the above tendency can be understood as follows; As discussed
in Section 5.5, the Wannier states are stabilized by the transfer energy due to its
spatial extension. For the bulk state, the corresponding energy gain is given by
εb − εWS ≈ 0.6 eV from Fig. 5.10. A bonding Wannier state near the sample edges
does not have all the neighboring bond sites that the Wannier states in the bulk
region have. Such a Wannier state has a smaller gain of the transfer energy than
that in the bulk region. In results, a bond near the sample edges is weaker than a
bond in the bulk region.
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Figure 7.19: Top view of the cleaved plane in the fractured ‘4501A’ sample with
4501 Si atoms. The black rods indicate the reconstructed bonding Wannier states,
while the white rods indicate the bonding Wannier states that are contained in the
initial crystalline structure. The atomic Wannier states are plotted as colored balls.
The color of balls is determined by the weight of s orbitals (fs). See the text for
details.
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Figure 7.20: A ‘semi-infinite’ view of the fractured ‘4501A’ sample with 4501 Si
atoms. Only the atoms in the semi-infinite region (y ≤ x) are visible and the other
atoms are invisible. The present figure shows the same snapshot as in Fig. 7.19
but is plotted in the different view method. See the caption of Fig. 7.19 for the
descriptions of the rods and the balls.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.21: Snapshots of the dynamical fracture simulation of the ‘4501A’ sample
with 4501 Si atoms. The present figures are plotted in the same view method as
in Fig. 7.19. The time interval between successive two snapshots is ∆t = 0.18 ps.
Figure 7.19 corresponds to the snapshot with a delay of 1.74 ps from the snapshot
(h).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.22: Snapshots of the dynamical fracture simulation of the ‘4501A’ sample
with 4501 Si atoms. The present figures (a) ,(b)... (h) show, in the different view
method, the same snapshots Fig. 7.21 (a) ,(b)... (h), respectively. The present view
method is described in the caption of Fig. 7.20.
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Figure 7.23: 3D views of the fractured ‘4501B’ sample with 4501 Si atoms. See the
caption of Fig. 7.19 for the descriptions of the rods and the balls. The figures (α)
and (β) shows the same sample from different view points.
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Figure 7.24: Top view of the cleaved plane in the fractured ‘4501B’ sample with
4501 Si atoms. This plane corresponds to the lower cleavage plane in Fig. 7.23.
The right-down corner has not yet fractured. See the caption of Fig. 7.19 for the
descriptions of the rods and the balls. The arrows with ‘α’ and ‘β’ indicates the
view directions in Fig.7.23 (α) and (β), respectively.
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Figure 7.25: Snapshots of the dynamical fracture simulation of the ‘4501B’ sample
with 4501 Si atoms. The present figures are plotted in the same view method as
in Fig. 7.24. The time interval between successive two snapshots is ∆t = 0.375 ps.
Figure 7.24 corresponds to the snapshot with a delay of 0.375 ps from the snapshot
(h).
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Figure 7.26: Snapshots of the dynamical fracture simulation of the ‘4501B’ sample
with 4501 Si atoms. The present figures (a) ,(b)... (h) show, in the view method of
Fig. 7.24(β), the same snapshots in Fig. 7.25 (a) ,(b)... (h), respectively,
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Anisotropic fracture propagation mechanism

Now we discuss the anisotropic fracture propagation mechanism on a flat (001)
surface. The anisotropy is seen in the ‘4501’ sample, especially within the early
snapshots of the Fig. 7.21. The bond-breaking propagation is anisotropic among
the [110] and [11̄0] directions.

This anisotropy is due to the quantitative difference of the successive bond break-
ing mechanism between the two directions, as explained below. A schematic picture
is shown in Fig. 7.27. In the [110] direction, the successive bond breakings prop-
agate along the nearest neighbor bond sites, which forms a connected zigzag path,
as in Fig. 7.27(a). Since the stability of the sp3 bonding state is strictly limited to
the four-fold coordination, a bond breaking process significantly weakens the nearest
neighbor bond sites. Therefore, the bond-breakings tend to occur at successive bond
sites simultaneously and the resultant two-fold coordinated atoms are stabilized by
the dehybridization mechanism, as explained in Fig. 7.6(a)-(c). This mechanism
means a local electronic instability and we call this fracture mode ‘electronic’ mode.
In the [11̄0] direction, on the other hand, the bond-breaking paths are not connected
as in Fig. 7.27(b). In this direction, the bond breakings are propagated through the
local strain relaxation, as in the Griffith theory (See Section 6.1). We call this mode
‘elastic’ mode.

In the ‘elastic’ mode, the strain relaxation mechanism requires the atomic mo-
tion, while, in the ‘electronic’ mode, the electronic instability can propagate without
atomic motions. As results, the bond breaking propagation along the nearest neigh-
bor bond sites (in the [110] direction of the present surface) can be faster than that
in the perpendicular direction (in the [11̄0] direction). Moreover, in Section 7.3,
we discussed that the formation of a cleaved surface does not occur without the
dehybridization mechanism, which is equivalent to the crucial role of the ‘electronic’
mode at the early stages of the present fracture phenomena.

Comment on other features

Now we make comments on other features seen in the results of the ‘4501A’ and
‘4501B’ samples; (i) In the ‘4501A’ sample, another fracture region seems to be
created from the crack tip, which is seen among the snapshots of Fig. 7.22(d)-(h).
In the continuum theory of fracture, the crack tip shows the singularity in the stress
field (See Appendix C.2). Several related topics, such as dislocation emissions, are
focused in the atomistic theory. The above feature might be interesting in the above
context. Moreover, one may think that the cleaved plane is bended into the (111)
plane at the left-down corner of the above snapshots. We should say, however, that
these features are seen on the region near a sample edge. Further investigations
should be done with different sample geometries or sizes, which are possible future
works. (ii) In the ‘4501B’ sample, a domain with several dimer rows seems to be
formed, which is seen in Fig. 7.24. From the classification in Section 6.3, the flipping
freedoms of the asymmetric dimers in the domain are in the (2×1) configuration,
which shows the anisotropy between the [110] and [1̄1̄0] directions. This anisotropy
is consistent to the anisotropy due to the fracture propagation direction; the fracture
propagates in the [110] direction and the [110] and [1̄1̄0] directions are inequivalent
due to the presence or the absence of the crack tip. We discussed in Section 6.3
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Figure 7.27: The anisotropic fracture propagation mechanism within a (001) plane;
(a) ‘electronic’ fracture mode, in which the fracture path forms a connected (zigzag)
line. (b) ‘elastic’ fracture mode, in which the fracture path does not forms a con-
nected line. In (a), a broken bond site is labeled by the single cross, which indicates
a single bond site. In (b), a broken bond site is labeled by the double cross, which
indicates successive zigzag bond sites that lies perpendicular to the paper.

that the local environment may affect the flipping motions. This feature may be
interesting in this context and further investigations should be done as one of possible
future works. We should be careful, however, to discuss the flipping motions of the
asymmetric dimers, because such motions can be activated in fine energy scales, as
shown Table 6.1.
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7.6 Fracture simulation with 104-105 atoms

In this section, the fracture simulations are done with 104 − 105 atoms, which are
larger samples than those in the previous section (Section 7.5). As a characteristic
feature of the present large samples, several step structures will be discussed.

Two samples are prepared, which contains the initial defect bond as the fracture
seed. One sample has the size labeled by n110×n11̄0×n001 = 49 × 50 × 49, in the
unit of the number of atomic layers. Here n110 = 50 corresponds to about 10 nm.
The sample contains 30025 atoms and is denoted as ‘30025A’ sample. The other
sample has the size labeled by n110×n11̄0×n001 = 97×100×49. The sample contains
118850 atoms and is denoted as ‘118850A’ sample. Within the atoms on the ‘top’ or
‘bottom’ sample surfaces, the z component of their motion is under the constraint
of the constant-velocity motion, and the x and y components are frozen. Within
the atoms on the ‘side’ sample surfaces, the x and y components of their motion
are frozen. Note that the above condition is just one of reasonable ones. The effect
of different conditions on the fracture behavior might be one of the possible future
works. The main purpose of the present simulations is the sample size dependence
of the fracture behavior. Therefore, the important point is the fact that, in the two
cases, all the conditions are the same, except the sample size.

We use the hybrid scheme between the variational and perturbative order-N
methods. The variational method is used only for selected Wannier states whose
localization centers are located near the fracture region. Some of such wave functions
change their character dynamically from the bulk (sp3 bonding) states to surface
ones, as discussed in Section 7.2. We choose the Wannier states for the variational
method, if the z coordinate of its localization center locates within ±4 atomic (bond)
layers from that of the initial defect bond site. In results, the Wannier states whose
localization centers lie among the nine bond layers are treated in the variational
method. The above region is sufficient for the fracture simulation, because the
fracture will occur only within ±2 atomic (bond) layers from that of the initial
defect bond site, as discussed below. In our program code, the member of the
selected Wannier states can be dynamically controlled, as explained in Section 7.4.
In the present simulations, however, the above member of the selected Wannier
states is unchanged during the simulation. In the ‘118850A’ sample, the following
additional condition is applied to the selection of the Wannier states; the localization
center of the Wannier state must be placed, on the xy plane, within a circular region
whose center is the initial defect bond site. The circular region will be shown in
the figures of this section. As results, about 104 Wannier states are treated in the
variational order-N method.

Results of the sample with 30025 atoms

Figures 7.28, 7.29, show the result of the ‘30025A’ sample. Figure 7.28 is plotted in
the same manner as in the previous section; Each Wannier state is classified from
its weight distribution into a bonding or atomic orbital, which is shown as a rod
or a ball in the figures, respectively, To see the step structures clearly, Fig. 7.29
is plotted in a different manner for the same snapshot; The broken bond sites are
shown as colored rods in the ideal crystalline geometry. The color of rods indicates
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the atomic layer as shown in the figure with samples. Especially, the atomic layer of
the black rods is the layer that contains the initial defect bond. Figures 7.30, 7.31,
7.32 show the successive snapshots of the dynamical fracture simulation.
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Figure 7.28: Top view of the cleaved plane in the fractured ‘30025A’ sample with
30025 Si atoms. See the caption of Fig. 7.19 for the descriptions of the rods and the
balls.
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Figure 7.29: Fracture geometry of the ‘30025A’ sample with 30025 Si atoms. The
broken bond sites are plotted as colored rods in the ideal (crystalline) geometry.
The color of rods indicates the atomic layer. The color sample is shown in the small
figure.
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Figure 7.30: The snapshots of the dynamical fracture simulations of the ‘30025A’
sample. The figures labeled ‘(a)’ are plotted in the manner of Fig. 7.28, while the
figures labeled ‘(b)’ are plotted in the manner of Fig. 7.29. The number in the
figures indicate the time. For example, the figures (a1) and (b1) shows the same
snapshot in different plotting manner. The time interval between the two successive
snapshots is ∆t = 0.225 ps.
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Figure 7.31: The snapshots of the dynamical fracture simulations of the ‘30025A’
sample. These snapshots are continued from Fig.7.30. See Fig.7.30 for details of the
plotting manner.
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Figure 7.32: The snapshots of the dynamical fracture simulations of the ‘30025A’
sample. These snapshots are continued from Fig.7.31. See Fig.7.30 for details of
the plotting manner. Fig. 7.28 and Fig. 7.29 correspond to the snapshots (a10) and
(b10), respectively.
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Results of the sample with 118850 atoms

Similar figures are also shown in the ‘118850A’ sample, in Figs. 7.33, 7.34, 7.35,
7.36, 7.37. Unlike the figures in the ‘30025A’ sample, the figures in the ‘118850A’
sample shows only a central area (n110×n11̄0 = 58×60). Moreover, the visualization
of Wannier states as rods or balls is done only for the selected Wannier states in
the variational method. From the initial preparation, the area of visible rods or
balls forms a circular area whose center is the initial defect bond site. Within the
resultant figures, we can see that the fracture propagate almost in a circular region
whose center is the initial defect bond site.
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Figure 7.33: Top view of the cleaved plane in the fractured ‘118850A’ sample with
118850 Si atoms. The figure shows only a central area (n110 ×n11̄0 = 58×60), while
the whole sample is labeled by n110×n11̄0×n001 = 97×100×49. See the caption of
Fig. 7.19 for the description of the rods and the balls. Here the visualization of rods
or balls is limited in a circular area whose center is the initial defect bond site.
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Figure 7.34: Fracture geometry of the ‘118850A’ sample with 118850 Si atoms. The
figure shows only a central area (n110 × n11̄0 = 58 × 60), while the whole sample
is labeled by n110×n11̄0×n001 = 97×100×49. See the caption of Fig. 7.29 for the
plotting manner. Note that the length of n110 = 50 atomic layers is about 10 nm.
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Figure 7.35: The snapshots of the dynamical fracture simulations of the ‘118850A’
sample. The figure shows only a central area (n110×n11̄0 = 58×60), while the whole
sample is labeled by n110×n11̄0×n001 = 97×100×49. See Fig.7.30 for the plotting
manner. The time interval between two successive snapshots is ∆t = 0.15 ps.
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Figure 7.36: The snapshots of the dynamical fracture simulations of the ‘1188505A’
sample. These snapshots are continued from Fig.7.35. See Fig.7.35 for the plotting
manner.
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(a7)

(a8)

(a9)

(b7)

(b8)

(b9)

Figure 7.37: The snapshots of the dynamical fracture simulations of the ‘1188505A’
sample. These snapshots are continued from Fig.7.36. See Fig.7.35 for the plotting
manner. Fig. 7.33 and Fig. 7.34 correspond to the snapshots (a10) and (b10),
respectively.
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Step structure of cleaved surface

Here the mechanism of the step formation is discussed. The elastic property of
silicon crystal shows only a small anisotropy within (001) plane; the [110] and [1̄10]
directions are equivalent and the values of the Young modulus are different by only
about 30 % in the [100] and [110] directions (See Appendix B.1). On the other
hand, as explained in Section 7.5, the anisotropic bond-breaking propagation in
one (001) plane increases the anisotropic strain energy. The anisotropy originates
from the inequivalence between the [110] and [11̄0] directions within one (001) layer.
Since the above inequivalence does not appear within two successive layers, a step
formation between them will release the anisotropic strain energy. In the ‘30025a’
sample, a step is formed between the layer of black rods and that of red rods. In the
[110] direction, the bond-breaking propagation reaches the sample surfaces without
step formations. In the [11̄0] directions, the bond-breakings propagate slower within
the early snapshots and a step is formed in the central area. After that, the fracture
propagates among the two atomic layers. Since the anisotropic fracture propagation
mechanism is symmetrically equivalent among the two layers, the resultant step
formation path almost forms lines in the [100] and [010] directions, as the boundary
between the fractured areas within the two layers.

In Fig.7.34, the largest sample in the present thesis, the above line structure
does not reach the sample surface but is canceled with additional step formations in
complicated paths. The sample size dependence of the step structures is understood
by the beginning of the crossover between nanoscale and macroscale samples; If the
sample contains so many atoms, the geometry of the resultant crack will be almost
circular, as in Fig. 7.34, so as to minimize the anisotropic strain energy. If not, the
strain energy is accumulated only within the confined bulk region due to the finite
sample size. The resultant fracture behavior is directly related to the anisotropic
atomic structure of the cleaved surface, as in Fig. 7.29.

Since the above mechanism of step formations is two dimensional, the present
samples may be nanoscale ‘thin’ samples. The 2D-like situation can be seen in
Fig. 7.38, in which the deformations are frozen at the ‘top’ and ‘bottom’ sample
surfaces, due to the boundary condition. In larger or thicker samples, an expected
fracture behavior is the bending of the fracture plane into the (111) plane, the
easiest cleavage plane in macroscale samples, which is the crossover in the present
context. Note that the deviation of the cleaved area from the (001) plane was seen
in Fig. 7.20, though it is near the sample edge. In an sufficiently large sample, the
fracture mode with the easiest cleavage plane will grow regardless of sample shape
and details of conditions.

Note that the dynamical simulation with 105 atoms is a practical limitation
within a single CPU workstation, since the total simulation time is more than one
week. We will discuss the future aspect in the next section.



164 CHAPTER 7. FRACTURE OF NANOCRYSTALLINE SILICON

Figure 7.38: A ‘semi-infinite’ view of the ‘118850A’ sample. See Fig.7.33 for the
plotting manner. The figure (a) and (b) correspond to the initial and final (fractured)
snapshots.
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7.7 Summary and discussion

Summary

Fracture processes of the nanocrystalline silicon were simulated among 102-105 atoms
under the [001] external load. We focused on the two issues as the purposes of
the simulations (Section 7.1). The two issues were investigated with the analysis
of quantum mechanical freedoms of electron systems. The following points were
discussed;

(I) When the fracture begins, the electronic energy gap vanishes as level crossings
between several ‘defect’ states. Here ‘defect’ states should be interpreted as
electronic states that do not appear in bulk (crystalline) structure. In fractured
samples, these ‘defect’ levels form a surface band (Section 7.2).

(II) The fracture process is observed with Wannier states. The elementary fracture
process accompanies the two-stage surface reconstruction. First, the two-fold
coordinated atom with a lone pair state is stabilized by the dehybridization
mechanism. Then, a pair of two-fold coordinated atoms form an asymmet-
ric dimer (Section 7.2). Without the dehybridization mechanism, no cleaved
surface is formed. (Section 7.3).

(III) Due to the anisotropy within a (001) single atomic layer, there are two kinds of
the fracture propagation mechanisms. We call them the ‘electronic’ mode and
the ‘elastic’ mode. The former mode is directly related to the dehybridization
mechanism (Section 7.5).

(VI) Steps are formed within larger samples. The origin of step formations can be
explained by releasing the anisotropic strain energy within the (001) plane,
which corresponds to the beginning of the expected crossover between the
nanoscale and macroscale samples (Section 7.6).

These results show the crucial importance of the quantum mechanical freedoms of
electron systems, particularly the dehybridization mechanism. These results also
show the crucial importance of large-scale calculations, because the fracture behav-
iors are essentially different among the sample sizes.

Discussion

Hereafter, we discuss several possible future works within the fracture of silicon
(nano)crystals.

For simulations with larger samples and/or longer timescales, the program code
in parallel computations should be prepared, as discussed in the last paragraph
of Chapter 7.6. We have finished the parallelization of the perturbative order-N
method (Section 5.4). For the parallel computations of fracture simulations, the
parallelization of the variational order-N method is also required. As in the per-
turbative order-N method (Section 5.4), the dominant procedures in the variational
order-N method can be parallelized with respect to the Wannier states, which is seen
in the chart of Fig. 5.1 (Section 5.2). One important technical point is the choice of
the parallelization technique. We have tested the two standard techniques, the MPI



166 CHAPTER 7. FRACTURE OF NANOCRYSTALLINE SILICON

technique and the OpenMP technique, for the perturbative order-N method (Section
5.4). We will determine which is suitable for the variational order-N method.

When the simulation method with the parallel computations is established, sev-
eral systematic investigations will be done among different conditions, such as dif-
ferent sample sizes, sample shapes, and boundary conditions.

Even with parallel computations, however, it is impractical to calculate the
macroscale fracture phenomena, with 1023 atoms, using the present large-scale elec-
tronic structure methods, Therefore, the theory should be mapped to the continuum
theory in a reasonable scheme. Since the present method is based on the well-defined
total energy functional, the mapping will be done as the mapping of the total energy
functional.



Chapter 8

Summary and general discussion

Summary

In this thesis, we constructed the theory for large-scale simulations by simplifying
the total energy functional in the electronic structure theory. Its foundation is based
on (a) the tight-binding Hamiltonian, especially its universality, (b) several order-
N methods, mainly those with the generalized Wannier states and (c) the hybrid
scheme by dividing the Hilbert space. The summary and general discussions for the
theories were done in Section 3.3 and Section 4.5. Test calculations are done up to
106 atoms with or without parallel computers. As a practical large-scale calculation,
the fracture process of nanocrystalline silicon was simulated with up to 105 atoms.
The results show that the quantum mechanical freedoms of the electron systems is
crucial for the fracture mechanism, as summarized in Section 7.7.

It is important that the above three theories are well defined within the quantum
mechanics. Therefore, the applicability is not limited to silicon or fracture simula-
tion. It is also important that the above three theories are independent, not only as
the theoretical concepts, but also as the corresponding subroutines in the program
code. We can develop these theories or subroutines independently. Since the present
program code consists of more than ten thousand lines, the independence among
subroutines is important, especially, when several persons join the development of
the program code.

By combining the three theories, we will design various simulations, among dif-
ferent numbers of atoms, different computational costs, and/or different systems.

General discussion with ‘multiscale mechanics’

Apart from the methodology, now we discuss the possible targets of large-scale
electronic structure calculations. In Chapter 1, we discussed the concept ‘multiscale
mechanics’, as a simulation method with different length scales. Here we discuss
several phenomena with different energy scales.

As an overview of the present work, Fig. 8.1 shows the typical energy scales in
silicon. The interactions in relatively low energy scales are those of the flipping
freedoms of asymmetric dimers on a clean (001) surface, which was explained in
Section 6.3. Some of their energy scales are smaller than the kinetic energy at room
temperature, which can be seen, for example, by low temperature STM observations.
In a general theoretical viewpoints, phenomena with a fine energy scale are difficult
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Figure 8.1: Various energy scales in silicon.

to reproduce by the total energy method of electronic structures. The interactions
in an ‘intermediate’ energy scale, energy scales in 1-10 eV, are directly related to the
universal tight-binding theory in Chapter 3. These energy scales characterize the
diagonal and off-diagonal elements of the Hamiltonian matrix. As the competition of
the above energies, the bonding and dehybridization mechanisms are characterized
by the energy scale of 1 eV (εchem). As a relatively high energy scale, the sputtering
energy can be considered, typically, in the scale of εsputter = 10 KeV.

Realistic materials contain various interactions among various energy scales. An
important point for constructing a proper theoretical model is whether the decou-
pling treatment between interactions is justified or not. In many situations, two
interactions in different energy scales are decoupled. An example is the frozen
core approximation in electronic structure calculations. This is justified, when the
binding energy of core electrons is much larger than the cohesive energy of va-
lence electrons. Several continuum or classical models are derived with decoupling
treatments. In perfect Si crystal at room temperature, for example, bond breaking
processes are not expected and only elastic motions are expected. This is the de-
coupling treatment based on the fact that the bondbreaking energy (εchem) and the
thermal energy (εthermal) are quite different in the energy scale (εchem � εthermal).
This decoupling treatment justifies a continuum or classical model that reproduces
the linear elasticity, but not bond breaking processes.

In several situations, however, two interactions in different energy scales are not
decoupled. Suppose a situation in which two energy terms are competitive in the to-
tal energy, though they are quite different in length and energy scales. Such situation
may occur in inhomogeneous systems. One example is the sputtering phenomena,
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in which one atom with a huge kinetic energy, typically εsputter = 10 KeV, possibly
causes the bond breakings, characterized by εchem = 1 eV, among many atoms. In
other words, a small number of atoms has a large energy (εsputter), while a large num-
ber of atoms has a small energy (εchem). The two energy terms can be competitive in
the total energy, which does not justify the decoupling treatment. Here we say that
such a system has the ‘multiscale feature’, in the sense that the system essentially
contains two competitive interactions in different energy and length scales. For such
systems, a critical size, or a critical number of atoms, n should be defined as the
ratio between the energy scales of the interactions. In the sputtering phenomena,
the critical number of atoms is given as

n =
εsputter

εchem

= 104. (8.1)

The above ‘multiscale feature’ originates from the inhomogeneous property of the
kinetic energy density, which will not appear in a thermal equilibrium system, due
to the equipartition theorem. The brittle fracture is another example of the above
‘multiscale features’, due to the competition between the chemical energy and the
strain energy. The ratio

n =
εchem

εstrain
(8.2)

corresponds to the Griffith critical crack length for fracture. In this case, the system
has an inhomogeneous structure, due to the presence of cleavage planes in a bulk
sample. As discussed in Section 6.1 or Section 6.3, the theory of nucleation or the
step formation mechanism of Si(001) surfaces can be explained by the analogous
energy competition mechanism in inhomogeneous structures.

In general, the critical size for the energy competition n is independent on the
system size N . Therefore, one can expect a crossover among the system sizes N ,
in which the critical system size is given as N ≈ n. In this thesis, we discuss such
crossovers among the nucleation mechanism, the fracture mechanism and the step
formation mechanism (See Section 6.1 and Section 6.3). Such a crossover can be a
target of large-scale electronic structure calculations, because quantum mechanical
processes of electron systems are essential and the system size of the simulation
should be large enough for the critical size n.

The time scale is also important to characterize physical phenomena. In the
fracture simulations of the present thesis, the total simulation time is on the order
of pico second. The time scale is governed by the crack propagation speed, which
is on the order of the sound or Rayleigh wave speed. Several phenomena, such as
growth, are in a much longer time scale than those discussed above. To simulate
such really long-time phenomena, several fundamental theories are desirable but are
not included in the present thesis. These methods should be a future work in the
general context of the process simulation.

We classified physical phenomena by their typical length, energy and time scales.
Such classification may give a guiding principle for further developments and appli-
cations of large-scale electronic structure calculations.
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A.1 First-principle molecular dynamics and limi-

tation of LDA

Based on the explanation in Section 2.1, this appendix describes two topics in ab
initio theory; the first-principle molecular dynamics and the limitation of the LDA.

First-principle molecular dynamics

The first-principle molecular dynamics [3] is based on the DFT energy functional,
Eq. (2.2), under the adiabatic (Born-Oppenheimer) approximation. The method is
also based on the ab initio pseudo potential theory [14, 15, 16, 17], in which the wave
functions only for the valence electrons are explicitly treated as ‘pseudized’ ones.
The guiding principle for generating pseudo potentials is to reproduce the scattering
property within the linear order of energy. ‘True’ valence wave functions oscillate
in the core region, the region near the atomic nucleus, due to the orthogonality to
the core wave functions. The ‘pseudo’ wave functions, on the other hand, does not
have the oscillating behavior at the core region. Such ‘smooth’ wave functions can
be expanded by a relatively small number of plane wave bases.

In the first-principle molecular dynamics, a periodic simulation cell is used and
each (pseudized) wave function is expanded by plane wave bases as

φi(r) =
|g|<gc∑

g

cige
igr. (A.1)

The reciprocal vectors ({g}) are defined for the simulation cell. Here, for simplicity,
the wave functions φi are limited to those at the Γ point (k = 0) in the Brillouin zone.
The plane wave bases {eigr} in Eq.(A.1) are limited within a cutoff wave number gc

(|g| < gc). The corresponding kinetic energy (g2
c/2) is usually called ‘cutoff energy’.

The wave functions are stored as the set of the plane wave coefficients {cig}. The
kinetic energy term is written as

Ekin =
occ.∑

i

〈φi|
−∇2

2
|φi〉 =

occ.∑
i

|g|<gc∑
g

1

2
g2|cig|2. (A.2)

Using Eq. (A.2) and a mathematical relation

∂

∂c∗ig
=

∫
dr
∂φ∗

i (r)

∂c∗ig

δ

δφ∗
i (r)

=
∫
dre−igr δ

δφ∗
i (r)

, (A.3)

the energy gradient with respect to one coefficient is given by

∂Etot

∂c∗ig
=

1

2
g2cig +

∫
dre−igrVeff(r)φi(r), (A.4)

which should be calculated in the program code. The real space integration in
Eq. (A.4) is numerically done on the mesh grid of the Cartesian coordinates. The
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mesh interval for the real space grid is chosen so as to reproduce all the plane waves
{eigr} within the cutoff (|g| < gc). In the program code, the Fast Fourier Transform
(FFT) algorithms are used for the Fourier transform in Eq. (A.1) and the inversed
Fourier transform in Eq. (A.4). In the first-principle molecular dynamics, the FFT
routines usually consume the dominant part of the total computational cost.

Fig.A.1 is two snapshots of an ab initio molecular dynamic simulation performed
with our original program code [125]. The system is α-NaSn with a partial melting
phase at 757K ≤ T ≤ 854K. The simulation cell contains 64 atoms. The tin atoms
form (Sn4)

4− tetrahedrons, as in the low-temperature solid phase, while the sodium
atoms show diffusive motions. In each snapshot, the charge density of a selected
eigen state is drawn. The selected eigen states are one near the Fermi level or
near the highest occupied level. An almost spherical charge distribution, labeled
‘n’, corresponds to a non-bonding (atomic) orbital on a tin atom, whereas a oval
charge distribution, labeled ‘b’, corresponds to a bonding orbital within a (Sn4)

4−

tetrahedron. The simulation describes the dynamical bondbreaking and rebonding
processes, which is a typical quantum mechanical process.

Figure A.1: Snapshots of an ab initio molecular dynamics simulation of α-NaSn
[125]. In each snapshot, the charge density of a selected eigen state is drawn. The
snapshot (b) is one after (a) by the time interval of 0.3 ps. Eight tetragonal (Sn4)

4−

are included and are labeled with the numbers 1, 2, 3...8. Two figures are rotated
to show the bonding character clearly. For the charge density, the characteristic
bonding or non-bonding regions are indicated ‘b’ or ‘n’, respectively.
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Limitation of the LDA

The second topic is the limitation of the LDA. Though the LDA reproduces a vast
number of experimental results, there are several systematic problems. See reviews,
such as Ref. [8]. To overcome such problems, several methods are being developed.
They are generally called ‘beyond LDA methods’. Now we discuss only one problem
of the LDA, which are related to the discussion of this thesis.

Within the LDA, the band gap in semiconductors is usually underestimated.
This problem is overcome by the GW approximation (GWA) [126], one of the beyond
LDA method. The GW approximation is based on the many body perturbation
theory and gives the quasi particle picture. See a review article [127] for details and
recent developments. As a typical example, the LDA and GWA results are compared
in the band structures of the silicon crystal, which can be seen in several papers,
such as Fig.5 of Ref.[128]. Other references can be seen in the review articles [127].
Figure A.2(a) shows the band structures of the silicon, in which the LDA result is
plotted by lines and the GWA result by dots. The experimental value of the band
gap is 1.17 eV. The LDA result of the band gap is too small (0.60 eV), while the
GWA result gives a reasonable value (1.26 eV). In Fig. A.2(b), the LDA result for the
conduction band (ε > 0) is shifted artificially upward by 0.66 eV, so as to reproduce
the band gap of the GWA. A good agreement is seen between the shifted LDA result
and the GWA result. In short, the problem of the LDA is solved by an artificial shift
of the conduction band. A similar situation can be seen on the Si(001) surface [129],
which is reviewed in Ref.[127]; The GWA result of the unoccupied surface state is
shifted upward by a constant energy value from the LDA result.

(a) (b) 
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]

E
ne

rg
y 
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]

Figure A.2: The comparison of the LDA (line) and GWA (dot) results in the band
structure of silicon. The top of the valence band is chosen as the origin of the energy
axis. The two figures (a) and (b) differ only in the fact that, in (b), the LDA result
of the conduction bands is shifted upward by 0.66 eV. See Ref.[128] or the review
article [127], as references. The present figures are plotted based on the data by A.
Yamasaki [130].
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A.2 Tight-binding formulation

In this appendix, we explain the formulation of practical tight-binding Hamiltonians
with the Slater-Koster form[60]. The explanation is done among s and p orbitals
with the example of the diamond structure.

Minimal Hamiltonian with s and p orbitals

The minimal tight-binding Hamiltonian is described by the nearest neighbor interac-
tion among the s, px, py,pz orbitals. Since the diamond structure contains two atoms
in the primitive cell, the nearest neighbor tight-binding Hamiltonian is given as an
8×8 matrix. The explicit parametrization for silicon and the other diamond struc-
ture solids was done in many papers, [69, 62]. The minimal Hamiltonian contains
the following six parameters, in the Slater-Koster form[60],

εs, εp, Vssσ, Vspσ, Vppσ, Vppπ. (A.5)

Among them, the two parameters Vppσ, Vppπ can be transformed into the following
two parameters

Vxx ≡ 1

3
Vppσ +

2

3
Vppσ (A.6)

Vxy ≡ 1

3
Vppσ − 1

3
Vppσ (A.7)

Figure A.3 shows the schematic picture of the hopping integrals of Vssσ, Vspσ, Vppσ, Vppπ.
Here we write down the expressions of matrix elements between the s and p

orbital in a general form; We define the s and p orbital on the i-th atom as |si〉 and

|pai〉 ≡ axi|pxi〉 + ayi|pyi〉 + azi|pzi〉, (A.8)

respectively. Here the vector ai ≡ (axi, ayi, azi) indicates the direction of the p
orbital |pai〉 (a2

xi + a2
yi + a2

zi = 1). The positions of the i-th atoms (i = 1, 2) are
defined as R1,R2. The vectors r , r̂ are defined, respectively, as

r ≡ R2 − R1, r̂ ≡ r

|r| . (A.9)

With these definitions, several matrix elements can be written as

〈s1|H|pa2〉 = (a2 · r̂)Vspσ (A.10)

〈pa1|H|pa2〉 = (a1 · r̂)(a2 · r̂)Vppσ + (b1 · b2)Vppπ, (A.11)

(A.12)

where we use the notation

bi ≡ ai − (ai · r̂) r̂ (i = 1, 2). (A.13)

Figure A.4(a) is the schematic picture of Eq. (A.10). Figure A.4(b) shows the vectors
r̂,ai, bi. Note that the inner product b1 · b2 in Eq. (A.11) is rewritten as

b1 · b2 = {a1 − (a1 · r̂) r̂} · {a2 − (a2 · r̂) r̂}
= (a1 · a2) − (a1 · r̂)(a2 · r̂) (A.14)
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Figure A.3: Schematic picture of the hopping integrals among s and p orbitals.

Figure A.4: (a) Schematic picture of the Hamiltonian matrix element 〈s1|H|pa2〉.
(b) Figure of the vectors r̂,ai, bi.

Hamiltonian with the extra ‘s∗’ orbital

An improved description of the electronic structure is given by the formulation with
the extra ‘s∗’ orbital [61], which was discussed in Section 3.1. The extra s∗ orbital is
in the s (spherical) symmetry and its physical origin could be the spherical average
of the five empty d orbitals. The resultant Hamiltonian is given as a 10×10 matrix,
which contains two additional parameters;

εs∗ , Vs∗pσ. (A.15)

In other words, the parameter Vs∗pσ corresponds to the average of the d-p interaction.
The formulation will be reduced to the minimal formulation with Vs∗pσ = 0. The
practical values of these parameters are shown in Table A.1 for the diamond structure
solids. Note that the original paper [61] also contains the parameters in zincblend
structure solids. The resultant band structure for silicon is shown in Fig.A.5(a), in
which the unit cell for the Brillouin zone is cubic as commonly used [62, 131]. The
corresponding ab initio calculation can be seen in Fig.A.2(b). Figure A.5(b) shows
the result of the modified Hamiltonian in which Vspσ = Vs∗pσ = 0 is used and the
other parameters are not modified from those in silicon. In Fig.A.5(b), the s, p and
s∗ bands are decoupled and, especially, the s∗ band is dispersion-less.

The formulations are not explained in detail. Instead, we discuss the eigen levels
at several points in the Brillouin zone. We pick out the Γ point and the X point,
because the Hamiltonian matrix is solved analytically at these points. In silicon,
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C Si Ge α-Sn
εs -4.5450 -4.2000 -5.8800 -5.6700
εp 3.8400 1.7150 1.6100 1.3300
εs∗ 11.3700 6.6850 6.3900 5.9000

4Vspσ 15.2206 5.7292 5.4649 4.5116
4Vs∗pσ 8.2109 5.3749 5.2191 5.8939
4Vss -22.7250 -8.3000 -6.7800 -5.6700
4Vxx 3.8400 1.7150 1.6100 1.3300
4Vxy 11.6700 4.5750 4.9000 4.0800
εp − εs 8.3850 5.9150 7.4900 7.0000
εs∗ − εp 7.5300 4.9700 4.7800 4.5700

Table A.1: The energy parameters of the tight-binding Hamiltonian in Ref. [61].
The parameters are in the unit of eV.

the top and bottom of the valence band appears at the Γ point and the bottom of
the conduction band appear near the X point in Fig. A.5(a).

At the Γ point, the eigen levels ε are decomposed into the s, p and s∗ bands as
follows;

ε = εs − 4Vssσ, n = 1 (A.16)

ε = εs + 4Vssσ, n = 1 (A.17)

ε = εp − 4Vxx, n = 3 (A.18)

ε = εp + 4Vxx, n = 3 (A.19)

ε = εs∗ , n = 2 (A.20)

Here and hereafter, n is the number of the degeneracy of each level. Since the eigen
levels are independent on Vspσ and Vs∗pσ, the eigen levels at the the Γ point are the
same between Fig. A.5(a) and (b).

At the X point, the Hamiltonian matrix is decomposed into four block matrices;
Two of them are the same 2×2 matrix, which gives the four eigen levels

ε = εp − 4Vxy, n = 2 (A.21)

ε = εp + 4Vxy, n = 2. (A.22)

These levels appear commonly in Fig.A.5(a) and (b). The other two block matrices
are the same the 3×3 matrix⎛

⎜⎝
εs −4iVspσ 0

4iVspσ εp −4iVs∗pσ

0 4iVs∗pσ εs∗

⎞
⎟⎠ (A.23)

and, therefore, the three eigen levels are doubly degenerated (n = 2). From Eq. (A.23),
the three eigen levels are equal to the atomic levels, εs, εp, εs∗, at the X point in
Fig. A.5 (b) , because of Vspσ = Vs∗pσ = 0. Moreover, if one chooses εs∗ and Vs∗p so
as to

εs∗ − εp = εp − εs (A.24)

Vs∗p = Vsp, (A.25)
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the eigen levels are easily obtained as

ε = εp −
√

(εp − εs)
2 + 2 (4Vsp)

2, n = 2 (A.26)

ε = εp, n = 2 (A.27)

ε = εp +
√

(εp − εs)
2 + 2 (4Vsp)

2, n = 2. (A.28)

In Table A.1, we can find that the above choices in Eqs. (A.24),(A.25) are roughly
coincident with the silicon case.

Finally, the difference of the eigen levels at the Γ and X points is discussed
between the present formulation, with s, px,py,pz,s

∗ orbitals, and the minimal for-
mulation, with s, px,py,pz orbitals. No difference is seen among the eigen levels
given by Eqs. (A.16), (A.17),(A.18),(A.19), (A.21),(A.22). The essential difference
is the fact that the 3×3 matrix in Eq. (A.23) will be reduced to the 2×2 matrix

(
εs −4iVsp

4iVsp εp

)
, (A.29)

in the minimal formulation.

Mathematical notes

Here several useful mathematical relations are added; A useful relation is given as

∂

∂r
(ai · r̂) = −1

r
bi (i = 1, 2). (A.30)

In practical tight-binding Hamiltonians for molecular dynamics, the hopping inte-
grals Vssσ, Vspσ, Vppσ, Vppπ are the functions of the interatomic distance r ≡ |r|. Using
Eq. (A.30), we write down the gradients of several terms in Eq. (A.10) and (A.11)
as follows;

∂

∂r
{(a2 · r̂)Vspσ(r)}

= (a2 · r̂)V ′
spσ(r)r̂ − 1

r
Vspσ(r)b2 (A.31)

∂

∂r
{(a1 · r̂)(a2 · r̂)Vppσ(r)}

= (a1 · r̂)(a2 · r̂)V ′
ppσ(r)r̂

− (a1 · r̂)Vppσ(r)
1

r
b2 − (a2 · r̂)Vppσ(r)

1

r
b1. (A.32)

These gradients are calculated in the program code, ao as to calculate the force on
an atom

∂Eelec

∂RI

. (A.33)
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Figure A.5: Band structure of silicon using a tight-binding Hamiltonian with the
extra ‘s∗’ orbital [61]; No parameter is modified for (a), while the parameters are
modified in Vspσ = Vs∗pσ = 0 for (b).
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B.1 Theory in cubic symmetry

This appendix is devoted to the elastic theory within the cubic symmetry. See
Refs. [131, 132], as standard textbooks.

Definitions of strain tensors

Consider nearly located two points r1 and r2. Under a deformation substantially
uniform near r1 and r2, the vector δr ≡ r1 - r2 is changed into

δr → δr′ ≡ δr + δu. (B.1)

This is the definition of the displacement vector δu. Now we introduce the unit
vector of the Cartesian coordinates (x̂1, x̂2, x̂3) ≡ (x̂, ŷ, ẑ) satisfying x̂i · x̂j = δij .
The vectors δr, δr′ and δu are written, respectively, by

δr ≡
3∑

i=1

(δxi)x̂i

δr′ ≡
3∑

i=1

(δx′i)x̂i

δu ≡
3∑

i=1

(δui)x̂i.

Here the vector δu is the function of (δx, δy, δz), which will be zero in the case of
(δx, δy, δz) = (0, 0, 0). Within the linear-order expansion of δuj

δuj ≈
∑

i

∂uj

∂xi
δxi, (B.2)

we can write

δr′ ≡ δr + δu

=
∑

i

(δxi)x̂i +
∑
j

(δuj)x̂j

=
∑

i

(δxi)x̂i +
∑
ij

∂uj

∂xi
(δxi)x̂j

=
∑

i

(δxi)

⎧⎨
⎩x̂i +

∑
j

∂uj

∂xi
x̂j

⎫⎬
⎭ . (B.3)

Equation (B.3) can be rewritten as

δr′ =
∑

i

(δxi)x̂
′
i (B.4)

with the definition of

x̂′
i ≡ x̂i +

∑
j

∂uj

∂xi
x̂j

=

(
1 +

∂ui

∂xi

)
x̂i +

∑
j(�=i)

∂uj

∂xi
x̂j. (B.5)
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Now the deformation (δr → δr′) is interpreted as the deformation of the axis vec-
tor (x̂i → x̂′

i), where the components (δx, δy, δz) are unchanged (
∑

i(δxi)x̂i →∑
i(δxi)x̂

′
i).

The components of the strain tensor are defined as, for example,

exx ≡ x̂ · x̂′ − 1

exy ≡ x̂′ · ŷ′(= eyx), (B.6)

which are zero without any deformation. All the independent components are
(exx, eyy, ezz, exy, eyz, ezx). When we substitute Eq.(B.5) into Eq.(B.6) and ignore
the second order of (∂u/∂x), we obtain

exx =
∂u1

∂x1

exy =
∂u2

∂x1
+
∂u1

∂x2
= eyx. (B.7)

Definitions of stress tensors

In general, the stress tensor σ has nine components :

σ ≡

⎛
⎜⎝
Xx Xy Xz

Yx Yy Yy

Zx Zy Zz

⎞
⎟⎠ . (B.8)

The capital letters indicate the direction of the force and the subscript indicates the
normal vector of the plane on which the stress is imposed. The stress on a plane of
which normal vector is �n is given by

σ�n. (B.9)

For example, (Xx, Yx, Zx) is the stress on the yz-plane. Now the theory is restricted
to the systems without rotational forces

Xy = Yx, Yz = Zy, Zx = Xz. (B.10)

The number of the independent components in the stress tensor is reduced from
nine to six and the stress tensor σ is reduced to a symmetric matrix.

Strain energy and stiffness constants

In general, the strain energy is written within the second order of the components
of strain. With the cubic symmetry, the strain energy is reduced to

U =
C11

2

(
e2xx + e2yy + e2zz

)
+ C12 (exxeyy + eyyezz + ezzexx)

+
C44

2

(
e2xy + e2yz + e2zx

)
, (B.11)

where the three independent parameters (C11, C12, C44) are called ‘elastic constants’
or ‘stiffness constants’. They characterize the elastic property of materials.
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The components of the stress tensor are given by, for examples,

Xx =
∂U

∂exx

= C11exx + C12 (eyy + ezz) (B.12)

Xy =
∂U

∂exy
= C44exy. (B.13)

In a matrix formula, we can write

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Xx

Yy

Zz

Xy

Yz

Zx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C12

C12 C11 C12

C12 C12 C11

C44

C44

C44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

exx

eyy

ezz

exy

eyz

ezx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B.14)

When we define the smaller matrix C̄ as

C̄ ≡

⎛
⎜⎝
C11 C12 C12

C12 C11 C12

C12 C12 C11

⎞
⎟⎠ , (B.15)

its eigen vectors are obtained as

⎛
⎜⎝
C11 C12 C12

C12 C11 C12

C12 C12 C11

⎞
⎟⎠

⎛
⎜⎝

1
1
1

⎞
⎟⎠ = (C11 + 2C12)

⎛
⎜⎝

1
1
1

⎞
⎟⎠ (B.16)

⎛
⎜⎝ C11 C12 C12

C12 C11 C12

C12 C12 C11

⎞
⎟⎠

⎛
⎜⎝ 1

−1
0

⎞
⎟⎠ = (C11 − C12)

⎛
⎜⎝ 1

−1
0

⎞
⎟⎠ (B.17)

⎛
⎜⎝
C11 C12 C12

C12 C11 C12

C12 C12 C11

⎞
⎟⎠

⎛
⎜⎝

0
1
−1

⎞
⎟⎠ = (C11 − C12)

⎛
⎜⎝

0
1
−1

⎞
⎟⎠ . (B.18)

Elastic modes

From the above eigen value analysis, the six freedoms {exx, eyy, ezz, exy, eyz, ezx} are
classified by the following three elastic modes, which are illustrated in Fig. B.1.

(a) Volume expansion mode with the bulk modulus B: exx = eyy = ezz ≡ ε ≡ δ/3

U =
B

2
δ2 (B.19)

B ≡ C11 + 2C12

3
(B.20)

Here δ is the ratio of the volume expansion.

(b) Shear mode with the shear modulus C11−C12 : exx = −eyy ≡ ε

U = (C11 − C12)ε
2. (B.21)
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(c) Shear mode with the shear modulus C44 : exy ≡ θ

U =
C44

2
θ2. (B.22)

The number of degeneracy is one for (a), two for (b) and three for (c). As we see in
the end of this appendix, the isotropic property requires the relation

C44 =
C11 − C12

2
, (B.23)

in which the two shear modes, (b) and (c), will be degenerated.

Figure B.1: Schematic figure of the three elastic modes in the cubic symmetry. The
elastic modes are labeled by the corresponding elastic constants: the bulk modulus
(B) and the two shear moduli (C11 − C12, C44).



B.1. THEORY IN CUBIC SYMMETRY 185

Compliance constants

When we solve Eq. (B.14) with respect to the components of strain, we obtain

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

exx

eyy

ezz

exy

eyz

ezx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C12

C12 C11 C12

C12 C12 C11

C44

C44

C44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Xx

Yy

Zz

Xy

Yz

Zx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

S11 S12 S12

S12 S11 S12

S12 S12 S11

S44

S44

S44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Xx

Yy

Zz

Xy

Yz

Zx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (B.24)

where

det[C̄ ] = (C11 + 2C12)(C11 − C12)
2 (B.25)

S44 =
1

C44
(B.26)

S11 =
(
C̄−1

)
11

=
1

det[C̄]

∣∣∣∣∣ C11 C12

C12 C11

∣∣∣∣∣
=

C2
11 − C2

12

(C11 + 2C12)(C11 − C12)2

=
C11 + C12

(C11 + 2C12)(C11 − C12)
(B.27)

S12 =
(
C̄−1

)
12

=
−1

det[C̄]

∣∣∣∣∣ C12 C12

C12 C11

∣∣∣∣∣
= − C12(C11 − C12)

(C11 + 2C12)(C11 − C12)2

=
−C12

(C11 + 2C12)(C11 − C12)
. (B.28)

The three independent parameters (S11, S12, S44) and called ‘compliance constants’,
which are equivalent to the stiffness constants (C11, C12, C44). Also note that

S11 − S12 =
1

C11 − C12
. (B.29)

Young modulus at (100) direction

As an example of the anisotropic elastic properties, the Young modulus and the
Poisson ratio are calculated under the external load in the (100) direction (E100, ν

(0)
100).

The present Poisson ratio ν
(0)
100 is defined for the deformation in the (010) or (001)

direction, which gives

eyy = ezz = −ν(0)
100exx. (B.30)
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The components of the stress tensor are zero except Xx. The non-zero components
of the strain tensor (exx, eyy, ezz) are determined by

E100exx = Xx =
∂U

∂exx
= C11exx + C12 (eyy + ezz) (B.31)

0 = Yy =
∂U

∂eyy
= C11eyy + C12 (ezz + exx) (B.32)

0 = Zz =
∂U

∂ezz
= C11ezz + C12 (exx + eyy) . (B.33)

When Eq. (B.30) is introduced into (B.32) or (B.33), we obtain

−C11ν
(0)
100 + C12(−ν(0)

100 + 1) = 0 (B.34)

and thus

ν
(0)
100 =

C12

C11 + C12
. (B.35)

The above equation and Eq. (B.31) give the Young modulus as

E100 = C11 + C12(−2ν
(0)
100)

=
C2

11 + C11C12 − 2C2
12

C11 + C12

=
(C11 − C12)(C11 + 2C12)

C11 + C12
. (B.36)

The same expression can be obtained from the compliance constants, when the
matrix equation

⎛
⎜⎝ exx

eyy

ezz

⎞
⎟⎠ =

⎛
⎜⎝ S11 S12 S12

S12 S11 S12

S12 S12 S11

⎞
⎟⎠

⎛
⎜⎝ Xx

Yy

Zz

⎞
⎟⎠ (B.37)

is reduced to

⎛
⎜⎜⎝

1

−ν(0)
100

−ν(0)
100

⎞
⎟⎟⎠ =

⎛
⎜⎝
S11 S12 S12

S12 S11 S12

S12 S12 S11

⎞
⎟⎠

⎛
⎜⎝
E100

0
0

⎞
⎟⎠ . (B.38)

Using Eqs. (B.27) and (B.28), the Young modulus and Poisson ratio are given, as

E100 =
1

S11
=

(C11 − C12)(C11 + 2C12)

C11 + C12
(B.39)

ν
(0)
100 = −E100S12 = −S12

S11
=

C12

C11 + C12
. (B.40)
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Another definition of strain tensor

Now we introduce another definition of the strain tensor, which are seen in some
textbooks. The nine variables uij are defined as

uxx =
∂u1

∂x1
= exx

uxy =
1

2

(
∂uy

∂x
+
∂ux

∂y

)(
=

1

2
eyx

)

uyx =
1

2

(
∂uy

∂x
+
∂ux

∂y

)(
=

1

2
eyx

)
(B.41)

and so on. The strain energy is defined as a function of the nine independent
variables;

U = U(uxx, uyy, uzz, uxy, uyx, uyz, uzy, uzx, uxz)

=
C11

2

(
u2

xx + u2
yy + u2

zz

)
+ C12 (uxxuyy + uyyuzz + uzzuxx)

+ 2C44 (uxyuyx + uyzuzy + uzxuzx) . (B.42)

The stress tensor is redefined as

σij ≡
(
∂U

∂uij

)
9 variables

, (B.43)

where U is differentiated as the function of the nine independent variables. In
results, we obtain the matrix representation of the stress tensor σ, such as

σxx ≡
(
∂U

∂uxx

)
9 variables

= C11uxx + C12(uyy + uzz) (B.44)

σxy ≡
(
∂U

∂uxy

)
9 variables

= 2C44uyx. (B.45)

The expressions with eij can be obtained with the relation

∂U

∂eij
=

1

2

{(
∂U

∂uij

)
9 variables

+

(
∂U

∂uji

)
9 variables

}
. (B.46)

The formulation with uij is useful in several mathematical formulations. For in-
stance, the energy description of Eq. B.42 is equivalent to

U =
∑
ij

σijuij = Tr[σu] (B.47)

Young modulus at arbitrary direction

Hereafter we derive the Young modulus at an arbitrary direction [132]. With the
notations given in this note, the extension ratio is defined given by

ε ≡ |δr′| − |δr|
|δr| , (B.48)
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which is essential to the calculations of the Young modulus and the Poisson ratio.
The linear expansion (B.2) gives

|δr′|2 =
∑

i

(δx′i)
2

=
∑

i

(δxi + δui)
2

=
∑

i

(δxi)
2 +

∑
i

(δxi)(δui) +
∑
j

(δxj)(δuj) +
∑
k

(δuk)(δuk)

= |δr|2 +
∑
ij

(δxi)
∂ui

∂xj
(δxj) +

∑
ij

(δxj)
∂uj

∂xi
(δxi)

+
∑
ijk

(δxi)
∂uk

∂xi

∂uk

∂xj

(δxj) (B.49)

Here we, again, ignore the second order of (∂u/∂x), and obtain

|δr′|2 ≈ |δr|2 + 2
∑
ij

Uij(δxi)(δxj) (B.50)

where

Uij ≡
1

2

(
∂uj

∂xi
+
∂ui

∂xj

)
. (B.51)

The matrix Uij is equal to the strain matrix eij , except a factor 1/2 in the off-
diagonal elements (Uxx = exx, Uxy = exy/2). Using the above relations, |δr′| is given
by

|δr′| ≈
⎧⎨
⎩|δr|2 + 2

∑
ij

Uij(δxi)(δxj)

⎫⎬
⎭

1/2

≈ |δr|
⎧⎨
⎩1 +

∑
ij

Uij
δxi

|δr|
δxj

|δr|

⎫⎬
⎭ (B.52)

If the direction vector n ≡ (nx, ny, nz) is defined by

nx ≡ δx

|δr| , ny ≡ δy

|δr| , nz ≡ δz

|δr| . (B.53)

The extension ratio in the n- direction is given by

ε(n) ≡ |δr′| − |δr|
|δr| ≈

∑
ij

Uij
δxi

|δr|
δxj

|δr| =
∑
ij

Uijninj

= exxn
2
x + eyyn

2
y + ezzn

2
z + exynxny + eyznynz + ezxnznx (B.54)

Now we turn to consider the situation that a cubic crystal is subject to an external
load in the l- direction and the Poisson ratio is measured in the m- direction. The
unit vectors l ≡ (lx, ly, lz) and m ≡ (mx, my, mz) are orthogonal (l · m = 0).
The extension ratios in the l- and m- directions are denoted as ε(l) and ε(m),
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respectively. The norm of the tension is denoted as P . The corresponding Young
modulus and Poison ratio are defined as

E(l) =
P

ε(l)

ν(l,m) ≡ −ε(m)

ε(l)
,

respectively. For the present situation, the stress tensor σ must has the properties

σl = P l (B.55)

σm = 0 (B.56)

This is fulfilled in the form of σij = P lilj or

⎛
⎜⎝
Xx Xy Xz

Yx Yy Yy

Zx Zy Zz

⎞
⎟⎠ = P

⎛
⎜⎝
lxlx lxly lxlz
lylx lyly lylz
lzlx lzly lzlz

⎞
⎟⎠ (B.57)

The diagonal and off-diagonal components are written in, for examples,

Xx = P lxlx = C11exx + C12 (eyy + ezz) (B.58)

Xy = P lxly = C44exy. (B.59)

The off-diagonal component of the strain tensor are given by, for example,

exy = P
lxly
C44

= PS44lxly (B.60)

The diagonal components {exx, eyy, ezz} are given by the matrix equation

⎛
⎜⎝
C11 C12 C12

C12 C11 C12

C12 C12 C11

⎞
⎟⎠

⎛
⎜⎝
exx

eyy

ezz

⎞
⎟⎠ = P

⎛
⎜⎝
l2x
l2y
l2z

⎞
⎟⎠ (B.61)

or ⎛
⎜⎝ exx

eyy

ezz

⎞
⎟⎠ = P

⎛
⎜⎝ S11 S12 S12

S12 S11 S12

S12 S12 S11

⎞
⎟⎠

⎛
⎜⎝
l2x
l2y
l2z

⎞
⎟⎠ (B.62)

The solutions are, for example,

exx

P
= S11l

2
x + S12(l

2
y + l2z)

= S11l
2
x + S12(1 − l2x)

= (S11 − S12)l
2
x + S12 (B.63)

or, with the stiffness constants,

exx

P
=

1

C11 − C12

l2x −
C12

(C11 + 2C12)(C11 − C12)
. (B.64)
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With the definition

γ1(l) ≡ l2xl
2
y + l2yl

2
z + l2z l

2
x (B.65)

and the relation

1 = (l · l)2 = (l2x + l2y + l2z)
2 = l4x + l4y + l4z + 2γ1(l), (B.66)

the extension ratio at the l-direction is given by

ε(l)

P
=

{
(S11 − S12)l

2
x + S12

}
l2x +

{
(S11 − S12)l

2
y + S12

}
l2y

+
{
(S11 − S12)l

2
z + S12

}
l2z + S44(l

2
xl

2
y + l2yl

2
z + l2z l

2
x)

= (S11 − S12)(l
4
x + l4y + l4z) + S12(l

2
x + l2y + l2z) + S44(l

2
xl

2
y + l2yl

2
z + l2z l

2
x)

= (S11 − S12)(1 − 2γ1) + S12 + S44γ1

= S11 + (S44 − 2(S11 − S12))γ1 (B.67)

or, with the stiffness constants,

ε(l)

P
=

C11 + C12

(C11 + 2C12)(C11 − C12)
+

(
1

C44
− 2

C11 − C12

)
γ1(l) (B.68)

With the definition

γ2(l,m) ≡ lxlymxmy + lylzmymz + lzlxmzmx

and the relation

0 = (l · m)2 = (lxmx + lymy + lzmz)
2

= l2xm
2
x + l2ym

2
y + l2zm

2
z + 2γ2(l,m), (B.69)

the extension ratio at the m-direction is given by

ε(m)

P
=

{
(S11 − S12)l

2
x + S12

}
m2

x +
{
(S11 − S12)l

2
y + S12

}
m2

y

+
{
(S11 − S12)l

2
z + S12

}
m2

z

+S44(lxlymxmy + lylzmymz + lzlxmzmx)

= (S11 − S12)(l
2
xm

2
x + l2ym

2
y + l2zm

2
z) + S12(m

2
x +m2

y +m2
z)

+S44(m
2
xm

2
y + l2yl

2
z + l2z l

2
x)

= (S11 − S12)(−2γ2) + S12 + S44γ2

= S12 + {(S44 − 2(S11 − S12)} γ2 (B.70)

or, with the stiffness constants,

ε(m)

P
=

−C12

(C11 + 2C12)(C11 − C12)
+

(
1

C44

− 2

C11 − C12

)
γ2(l,m) (B.71)
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The Young modulus is given by

1

E(l)
≡ ε(m)

P

= (S11 − 2S12) + (S44 − 2(S11 − S12))γ1

=
C11 + C12

(C11 + 2C12)(C11 − C12)
+

(
1

C44

− 2

C11 − C12

)
γ1(l). (B.72)

The Poisson ratio is given by

ν(l,m) ≡ −ε(m)

ε(l)

= − S12 + {(S44 − 2(S11 − S12)} γ2

(S11 − 2S12) + {S44 − 2(S11 − S12)} γ1

= −
−C12

(C11+2C12)(C11−C12)
+

(
1

C44
− 2

C11−C12

)
γ2(l,m)

C11+C12

(C11+2C12)(C11−C12)
+

(
1

C44
− 2

C11−C12

)
γ1(l)

(B.73)

In the case with l = (1, 0, 0) and m = (0, 1, 0), the values γ1 = 0, γ2 = 0 are obtained
and Eqs. (B.72),(B.73) are reduced to Eqs. (B.39), (B.40). From Eqs. (B.72),(B.73),
the isotropic elastic properties will be given by

C44 =
C11 − C12

2
. (B.74)

The anisotropic Young modulus in silicon is shown in Table B.1.

C11 C12 C44 E100 E110 E111

Si 166 64 80 130 170 189

Table B.1: The elastic constants C11, C12, C44 and the anisotropic Young moduli
E100, E110, E111 in silicon are shown in the unit of GPa. The anisotropic Young
moduli are calculated by Eq. (B.72). Note that the (100),(110) and (111) directions
correspond to γ1 = 0,γ1 = 1/4 and γ1 = 1/3, respectively.
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B.2 Simple classical model in tetrahedral struc-

ture

Here we demonstrate how the anisotropic elastic property in the tetrahedral struc-
ture is derived from a microscopic model. We consider a simple classical model,
which is consist of the two harmonic potentials in the bond stretching mode and the
bond bending mode [62]. The model contains the two parameters and we will fit
the two parameters so as to reproduce the bulk modulus B and the shear modulus
Cs(≡ C11 − C12). Then the shear modulus C44 will be determined from the present
model and compared to the experimental value.

Figure B.2 shows the tetrahedral structure with the two shear modes. The atom
placed at (0,0,0) and the four nearest neighbor atoms are picked out

O
l0√
3
(0, 0, 0)

A
l0√
3
(1, 1, 1)

B
l0√
3
(1,−1,−1)

C
l0√
3
(−1,−1, 1)

D
l0√
3
(−1, 1,−1).

We will consider the above five atoms that includes the four bonds (OA,OB,OC,OD)
and six bond angles (AOB,BOC,COD,DOA). The total strain energy per atom is
given by

U =
1

2

4∑
i:bond

α

2

(
δli
l0

)2

+
6∑

j:bondangle

β

2
(δθj)

2 . (B.75)

The factor 1/2 in the first term cancels the double counting of the bond stretching
energy; For example, the stretching energy of the bond OA is counted as the energy
per atom for the atom O and the atom A.

Figure B.2: Top view of the tetrahedral structure. The arrows indicate the x and y
components of the deformation in (a) the shear mode of C11−C12 or (b) the shear
mode of C44. See the text for the coordinates of each atom.
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Bulk modulus

The bulk modulus is derived, when the deformed atomic coordinates are chosen as

O
l0√
3
(0, 0, 0)

A (1 + ε)
l0√
3
(1, 1, 1)

B (1 + ε)
l0√
3
(1,−1,−1)

C (1 + ε)
l0√
3
(−1,−1, 1)

D (1 + ε)
l0√
3
(−1, 1,−1).

The corresponding strain energy is

U = U1 ≡
B

2
(3ε)2v0 =

9Bv0

2
ε2 (B.76)

per atom, due to the definition of the bulk modulus. In Eq. (B.75), on the other
hand, the four bond length is stretched by δli/l0 = ε and no bond angle is changed.
Thus the strain energy U1 should be written as

U1 =
1

2
× 4 × α

2
ε2 = ε2α. (B.77)

Now we obtain the relation between the microscopic parameter α and the Bulk
modulus B as

α =
9Bv0

2
(B.78)

Shear modulus C11 − C12

The shear modulus Cs ≡ C11−C12 is derived, when the deformed atomic coordinates
are chosen as

O
l0√
3
(0, 0, 0)

A
l0√
3
(+1+ε,+1−ε,+1)

B
l0√
3
(+1+ε,−1−ε,−1)

C
l0√
3
(−1−ε,−1+ε,+1)

D
l0√
3
(−1−ε,+1−ε,−1).
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Within the linear order of ε, no bond length is changed. The change of the six bond
angles are classified into three types;

cos(AOC) = cos(BOD)

=
1

3
{(1 + ε)(−1 − ε) + (1 − ε)(−1 + ε) + 1}

= −1

3
+O

(
ε2

)
(B.79)

cos(AOB) = cos(COD)

=
1

3
{(1 + ε)(1 + ε) + (1 − ε)(−1 + ε) − 1}

= −1

3
(1 − 4ε) +O

(
ε2

)
(B.80)

cos(BOC) = cos(AOD)

=
1

3
{(1 + ε)(−1 − ε) + (−1 + ε)(−1 + ε) − 1}

= −1

3
(1 + 4ε) +O

(
ε2

)
(B.81)

We recall that the bond angle in the ideal crystal θ0 gives

cos θ0 = −1

3
, sin θ0 =

2
√

2

3
(B.82)

and θ0 ≈ 109.47. For a small deviation δθ, we obtain

cos(θ0 + δθ) = cos θ0 cos(δθ) − sin θ0 sin(δθ)

≈ −1

3
− 2

√
2

3
δθ

= −1

3

(
1 + 2

√
2δθ

)
. (B.83)

When the above relation is compared with Eq. (B.80) or (B.81), the four bond angles
are changed by the amplitude of

|δθ| =
√

2ε (B.84)

The corresponding strain energy per atom is given by

U = U2 ≡ 4 × β

2
(
√

2ε)2 = 4βε2, (B.85)

which is compared with

U2 ≡ Csε
2v0, (B.86)

Therefore we obtain the relation between the microscopic parameter β and the elastic
constant Cs

β =
Cs

4
v0 (B.87)
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Shear modulus C44

The shear modulus C44, when the deformed atomic coordinates are chosen as

O
l0√
3
(0, 0, ξε)

A
l0√
3
(+1+ε,+1,+1)

B
l0√
3
(+1−ε,−1,−1)

C
l0√
3
(−1−ε,−1,+1)

D
l0√
3
(−1+ε,+1,−1).

Here we introduce an internal strain parameter ξ [133, 81, 62]. We will find that the
parameter is positive. The corresponding strain energy per atom is given by

U3 ≡
C44

2
ε2v0. (B.88)

The four bond lengths are classified into two types;

(OA) = (OC)

=
l0√
3

{
(1 + ε)2 + 1 + (1 − ξε)2

} 1
2

≈ l0√
3
{1 + 2ε+ 1 + 1 − 2ξε}

1
2

= l0

{
1 +

2(1 − ξ)

3
ε

}1
2

≈ l0

{
1 +

(1 − ξ)

3
ε

}
(B.89)

(OB) = (OD)

=
l0√
3

{
(1 − ε)2 + 1 + (1 + ξε)2

} 1
2

≈ l0

{
1 − (1 − ξ)

3
ε

}
. (B.90)

From the above relations, the bond stretching energy is contributed by four bonds
and is given by

1

2

4∑
i:bond

α

2

(
δli
l0

)2

⇒ 1

2
× 4 × α

2
×

{
1 − ξ

3
ε

}2

=
α(1 − ξ)2

9
ε2. (B.91)

On the other hand, the bond angles are classified into three types; The first type
is the angle between two shorter bonds, that is, the angle (BOD). We calculate the
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inner product

(−→
OB · −→OD

)
=

l20
3
{(1 − ε)(−1 + ε) + (−1)(+1) + (−1 − ξε)(−1 − ξε)}

≈ − l
2
0

3
{1 − 2(1 + ξ)ε} (B.92)

and the product of the bond lengths,using (B.90),

|OB| |OD| = l20

{
1 − (1 − ξ)

3
ε

}2

≈ l20

{
1 − 2(1 − ξ)

3
ε

}
. (B.93)

From the above relations, we obtain

cos(BOD) =

−→
OB · −→OD

|OB| |OD|

= −1

3

1 − 2(1 + ξ)ε

1 − 2(1−ξ)
3

ε

= −1

3
{1 − 2(1 + ξ)ε}

{
1 +

2(1 − ξ)

3
ε

}

= −1

3

{
1 − 4

3
(1 + 2ξ)ε

}
. (B.94)

The second type is the angle between two longer bonds, that is, the angle (AOC).
We calculate the inner product

(−→
OA · −→OC

)

=
l20
3
{(1 + ε)(−1 − ε) + (+1)(−1) + (1 − ξε)(1− ξε)}

≈ − l
2
0

3
{1 + 2(1 + ξ)ε} (B.95)

and the product of the bond lengths,using (B.89),

|OA| |OC| = l20

{
1 − (1 + ξ)

3
ε

}2

≈ l20

{
1 +

2(1 − ξ)

3
ε

}
. (B.96)

From the above relations, we obtain

cos(AOC) =

−→
OA · −→OC

|OA| |OC|

= −1

3

1 + 2(1 + ξ)ε

1 + 2(1−ξ)
3

ε

= −1

3
{1 + 2(1 + ξ)ε}

{
1 − 2(1 − ξ)

3
ε

}

= −1

3

{
1 +

4

3
(1 + 2ξ)ε

}
. (B.97)
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The other four bond angles, (AOB),(DOA),(COD),(BOC), are classified by the bond
angle between a shorter bond and a longer bond. The above angles are not changed
within the linear order, which is proved, as follows. For example, we calculate
cos(AOB) using the inner product

(−→
OA · −→OB

)
=

1

3
{(1 + ε)(1 − ε) + (+1)(−1) + (1 − ξε)(−1 − ξε)}

= − 1√
3

{
1 +O(ε2)

}
(B.98)

and the product of the bond lengths

|OA| |OB|

= l20

{
1 − (1 + ξ)

3
ε

}
×

{
1 +

(1 + ξ)

3
ε

}
≈ l20

{
1 +O(ε2)

}
. (B.99)

The above relations result in

cos(AOB) =

−→
OA · −→OB

|OA| |OB| = −1

3
+O

(
ε2

)
. (B.100)

From the above calculations of the six bond angles, we can see that the bond bending
energy is contributed by two bond angles whose amplitudes are the same value of

|δθ| =

√
2

3
(1 + 2ξ)ε, (B.101)

where we use Eq. (B.83). The corresponding bond bending energy is given by

6∑
j:bond angle

β

2
(δθj)

2 ⇒ 2 × β

2

(√
2

3
(1 + 2ξ)ε

)2

=
2β

9
(1 + 2ξ)2ε2. (B.102)

The strain energy due to C44 is the sum of Eq. (B.91) and Eq. (B.102), which is
given, as a function of ξ by

U3(ξ) =
α(1 − ξ)2

9
ε2.+

2β

9
(1 + 2ξ)2ε2. (B.103)

The equilibrium strain energy is determined by relaxing the internal strain parameter
ξ;

U ′
3(ξ) = 0. (B.104)

The relaxed value is denoted as ζ and is given by

0 =
9

ε2
U ′

3(ζ)

= 2α(1 − ζ)(−1) + 4β(1 + 2ζ)2

= −2{α(1 − ζ) − 4β(1 + 2ζ)}
= −2{(α− 4β) − ζ(α+ 8β)}. (B.105)
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As results, we obtain

ζ =
α− 4β

α + 8β
. (B.106)

Now we would like to calculate the relaxed strain energy U3(ζ). As preparations,
we calculate

1 − ζ =
α + 8β

α + 8β
− α− 4β

α+ 8β
=

12β

α+ 8β
(B.107)

1 + 2ζ =
α + 8β

α + 8β
+

2α− 8β

α + 8β
=

3α

α + 8β
. (B.108)

When the above relations are introduced into Eq. (B.103),

U3(ζ) =
α(1 − ζ)2

9
ε2.+

2β

9
(1 + 2ζ)2ε2

=
ε2

9

⎧⎨
⎩α

(
12β

α+ 8β

)2

+ 2β

(
3α

α + 8β

)2
⎫⎬
⎭

=
ε2

9(α + 8β)2

{
144αβ2 + 18α2β

}

=
ε2

9(α + 8β)2
× 18αβ(8β + α)

=
2αβε2

α + 8β
. (B.109)

We rewrite Eq. (B.78) and Eq. (B.87)

α =
9Bv0

2
, β =

Cs

4
v0. (B.110)

From the above relation, the internal strain and the relaxed strain energy is given
by

ζ =
α− 4β

α+ 8β
=

9B − 2Cs

9B + 4Cs
, (B.111)

and

U3(ζ) =
2αβε2

α + 8β
=

29B
2

Cs

4
9B
2

+ 8Cs

4

ε2 =
1

2

9BCs

9B + 4Cs

ε2. (B.112)

Since the above energy should be equal to Eq. (B.88), we obtain an important
relation

C44 =
9BCs

9B + 4Cs
. (B.113)

Moreover, an theoretical quantity C
(0)
44 is often defined as the shear constant for the

strain without the internal strain (ξ = 0), which results, using Eq. (B.103), in

C
(0)
44

2
ε2v0 ≡ U3(ξ=0) =

α

9
ε2 +

2β

9
ε2. (B.114)
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Using the above relation and Eq. (B.110),

C
(0)
44 =

1

9v0
(2α + 4β) =

1

9

(
2
9B

2
+ 4

Cs

4

)
= B +

1

9
Cs. (B.115)

Equations (B.111), (B.113), (B.115) are the resultant relations.

Discussion

The above two-parameter classical model is applied to silicon. In silicon case, the
bulk modulus nearly equals to the shear modulus

B ≈ Cs ≈ 100 [GPa], (B.116)

which is adopted as the input values. In the case with B → Cs, Eqs. (B.111),
(B.113), (B.115) are reduced to

ζ → 7

13
≈ 0.54 (B.117)

C44

Cs

→ 9

13
≈ 0.69 (B.118)

C
(0)
44

Cs
→ 10

9
≈ 1.11 (B.119)

The results are shown in Table B.2 with ab initio and experimental values. The
present simple model reproduces the experimental values well, which implies that
the elastic constants can be understood by the present simple model, that is, the
model with the harmonic potentials of the bond stretching and bond bending.

Here we add several comments; (a) Keating gives the following expressions [134]:

ζ =
2C12

C11 + C12
=

3B − Cs

3B + Cs
(B.120)

C44 =
(C11 − C12)(C11 + 3C12)

2(C11 + C12)
=

3BCs

3B + Cs
, (B.121)

which are similar to Eqs. (B.111) and (B.113), respectively. (b) The internal strain
parameter ζ is determined by the competition of the bond stretching energy and
the bond bending energy. In limiting cases, the value will be given as

ζ → 1, (α� β or B � Cs) (B.122)

ζ → −1

2
, (α
 β or B 
 Cs). (B.123)

In silicon case, the value of ζ is positive, which means that the bond stretching
energy is more important than the bond bending energy. In other words, the bond
is harder to stretch but easier to bend. (c) Since the present simple model is a three-
body interatomic potential, the model does not reproduce the energy difference of
the diamond structure and the wurzite structure. So as to reproduce the above
difference, the energy term for the dihedral angles should be considered.
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Simple model ab initio[81] Exp.
B [GPa] 100 (input) 92.0 97.8
Cs[GPa] 100 (input) 98.0 101.2
C44 [GPa] 69 85.0 79.6

C
(0)
44 [GPa] 111 111 -

ζ 0.54 0.53 0.54 [135]

Table B.2: The elastic constants and the internal strain parameter ζ in silicon, where
B ≡ (C11 + 2C12)/3, Cs ≡ C11 − C12. In the ‘simple model’, B = Cs = 100 GPa are
used as the input values and the other quantities are given by Eqs. (B.111), (B.113),
(B.115).
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B.3 Theory in isotropic medium

This appendix is devoted to the theory of elasticity in isotropic (3D) medium. See
Refs. [132, 136] as standard textbooks. As explained in Section B.1, the number
of the independent elastic parameters is reduced to two, in isotropic media. We
redefine the strain energy with two parameters as

U ≡ U0 +
λ

2

(∑
i

uii

)2

+ µ
∑
ij

u2
ij

= U0 +
λ

2
(Tr[u])2 + µ

∑
ij

u2
ij. (B.124)

The parameters λ and µ are called Lame parameters. Here the trace

Tr[u] = uxx + uyy + uzz =
∂ux

∂x
+
∂uy

∂y
+
∂uz

∂z
= divu (B.125)

corresponds to the ratio of the volume expansion. Note that, there must be some
conditions on the components of the strain tensor, because they are defined as
partial derivatives of the components of the displacement vector u = u(r). These
conditions are called the condition of compatibility [132, 136].

Stress and strain

The stress tensor σ is given by

σij ≡
(
∂U

∂uij

)
9 variables

= λ (Tr[u]) δij + 2µuij. (B.126)

The trace of Eq. (B.126) is reduced to

Tr[σ] = λ (Tr[u])
∑
ij

δij + 2µTr[u] = (3λ+ 2µ)Tr[u]. (B.127)

Using Eq. (B.127), Eq. (B.126) is solved for uij as

uij =
1

2µ

[
σij −

λTr[σ]

3λ+ 2µ
δij

]
. (B.128)

Bulk and shear modulus

If we define the shear stain matrix as

ũij ≡ uij −
Tr[u]

3
δij , (B.129)

its trace is equal to zero

Tr[ũ] = 0. (B.130)
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Using the above relations, one obtains

∑
ij

u2
ij =

∑
ij

(
ũij +

Tr[u]

3
δij

)2

=
∑
ij

(ũij)
2 +

2Tr[u]

3

∑
ij

δij ũij +

(
Tr[u]

3

)2 ∑
ij

δ2
ij

=
∑
ij

(ũij)
2 + 0 +

(
Tr[u]

3

)2

3

=
∑
ij

(ũij)
2 +

(Tr[u])2

3
. (B.131)

From above all, the deformation energy is written as

U = U0 +
1

2

(
λ+

2

3
µ
)

(Tr[u])2 + µ
∑
ij

ũ2
ij. (B.132)

Here the first term corresponds to the volume expansions and the second term
corresponds to the shear strains. For the energy stability, the coefficients must
satisfy

B ≡ λ+
2

3
µ > 0, µ > 0. (B.133)

Here B or µ is called the bulk or shear modulus, respectively.

Young modulus and Poisson ratio

If the components of stress are chosen to be zero except σxx, Eq. (B.128) gives the
non-zero components of strain as

uxx =
λ+ µ

µ(3λ+ 2µ)
σxx (B.134)

uyy = uzz = − λ

2µ(3λ+ 2µ)
σxx. (B.135)

The Young modulus E and the Poisson ratio ν are given as

E ≡ σxx

uxx

=
µ(3λ+ 2µ)

λ+ µ
(B.136)

ν ≡ −uyy

uxx
=

λ

2(λ+ µ)
. (B.137)

Since the parameter set (λ, µ) can be written by the parameter set (E, ν)

λ =
νE

(1 − 2ν)(ν + 1)

µ =
E

2(ν + 1)
, (B.138)
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Eq. (B.126) gives

σxx =
E

(1 + µ)

{
1 − ν

1 − 2ν
uxx +

ν

1 − 2ν
(uyy + uzz)

}
(B.139)

σxy =
E

(1 + µ)
uxy. (B.140)

When Eqs. (B.139), (B.140) are compared with Eqs. (B.12), (B.13), we obtain

C11 =
E

(1 + µ)

1 − ν

1 − 2ν
(B.141)

C12 =
E

(1 + µ)

ν

1 − 2ν
(B.142)

C44 =
C11 − C12

2
=

E

2(1 + ν)
. (B.143)

From Eq. (B.137), the Poisson ratio is rewritten as

ν =
1

2

λ

λ+ µ
=

1

2

B − 2
3
µ

B + 1
3
µ

=
1

2

1 − 2
3

µ
B

1 + 1
3

µ
B

. (B.144)

Since the parameters µ and B are positive, the Poisson ratio ν must satisfy

−1 ≤ ν ≤ 1

2
. (B.145)

In most experiments, the Poisson ratio is positive (0 < ν < 1/2).

Equation of motion

The equation of motion for a local region is given by

ρüi =
∑
j

∂σij

∂xj

, (B.146)

where the constant ρ is the density. If the right hand side is denoted as fi, the
vector (fx, fy, fz) is the force imposed on the local region. From Eq. (B.126), the
right hand side of (B.146) is given as

∑
j

∂σij

∂xj

= λ
∂

∂xi

(Tr[u]) + 2µ
∑
j

∂uij

∂xj

= λ
∂

∂xi
(Tr[u]) + µ

∑
j

∂

∂xj

(
∂uj

∂xi
+
∂ui

∂xj

)

= λ
∂

∂xi
(Tr[u]) + µ

∂

∂xi

∑
j

∂uj

∂xj
+ µ

∑
j

∂2ui

∂x2
j

= (λ+ µ)
∂

∂xi
(Tr[u]) + µ∆ui. (B.147)

Therefore, Eq. (B.146) is given, in a vector form, as

ρü = (λ+ µ)grad divu + µ∆u. (B.148)
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Biharmonic property of the displacement vector

From Eq. (B.148), the balance equation is given as

0 = (λ+ µ)grad divu + µ∆u (B.149)

or, with the relation ∆ = graddiv − rot rot,

0 = (λ+ 2µ)graddivu − µ rot rotu. (B.150)

When we take the divergence of Eq. (B.150) and use the relation div rot = 0, we
find that divu is harmonic;

0 = div grad divu = ∆divu. (B.151)

If the Laplacian ∆ is operated on Eq. (B.149), we obtain

0 = (λ+ µ)∆grad divu + µ∆2u

= (λ+ µ)grad∆divu + µ∆2u, (B.152)

where the second equality is given by the relation ∆ grad = grad∆. From Eq. (B.151)
and Eq. (B.152), we conclude that u is biharmonic;

∆2u = 0. (B.153)

Elastic wave

Now two velocity parameters (cl, ct) are introduced by the definitions

cl =

√
λ+ 2µ

ρ
=

√
3B + 4µ

3ρ
(B.154)

ct =

√
µ

ρ
. (B.155)

Here the inside of the square root is positive, because of B, µ > 0. The parameter
set (cl, ct) can be written by the parameter set (E, ν) as

cl =

√√√√ E(1 − ν)

ρ(1 + ν)(1 − 2ν)
(B.156)

ct =

√
E

2ρ(1 + ν)
. (B.157)

Now the ratio between the two velocity parameters are determined only by the
Poisson ratio ν as

ct
cl

=

√
1 − 2ν

2(1 − ν)
. (B.158)
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Note that cl >
√

2ct within the range of 0 < ν < 1/2. We also find that

λ = ρ
(
c2l − 2c2t

)
(B.159)

µ = ρc2t (B.160)

E = ρc2t
3c2l − 4c2t
c2l − c2t

(B.161)

ν =
c2l − 2c2t

2(c2l − c2t )
. (B.162)

Several useful relations are added

λ+ 2µ = ρc2l (B.163)

1 − ν =
c2l

2(c2l − c2t )
. (B.164)

The equation of motion of Eq. (B.148) is written, with cl, ct, as

ü = c2t∆u + (c2l − c2t )grad divu. (B.165)

From vector analysis, a vector field can be decomposed into two vector fields

u = ul + ut (B.166)

where

divut = 0 (B.167)

rotul = 0. (B.168)

When Eq. (B.166) is substituted to Eq. (B.165),

0 = ül + üt − c2t ∆ul − c2t ∆ut − (c2l − c2t )grad divul. (B.169)

If we take the divergence of Eq. (B.169) and use the relation ∆div = div∆, we
obtain

0 = div ül − c2t ∆div ul − (c2l − c2t )∆ divul

= div
(
ül − c2l ul

)
. (B.170)

On the other hand, Eq. (B.168) gives relation

0 = rot
(
ül − c2l ∆ul

)
. (B.171)

In general, if a vector A satisfies divA = 0 and rotA = 0, the vector A should
be a constant vector. Since the elastic wave has the trivial solution of ul = 0,
Eqs. (B.170),(B.171) give

ül − c2l ∆ul = 0. (B.172)
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If we take the rotation of (B.169) and use the relations ∆rot = rot∆ and rot grad = 0,
we obtain

0 = rot üt − c2t∆rot ul

= rot
(
ül − c2l ∆ul

)
. (B.173)

We can follow a derivation similar to that of Eq. (B.172) and obtain

üt − c2t∆ut = 0. (B.174)

The equations of elastic waves are summarized as follows;

üt = ct∆ut (B.175)

ül = cl∆ul (B.176)

div ut = 0 (B.177)

rotul = 0 (B.178)

ct
cl

=

√
1 − 2ν

2(1 − ν)
. (B.179)

Surface wave

From the Eqs. (B.175),(B.176), (B.177),(B.178),(B.179), we derive the surface elastic
waves, or the Rayleigh waves, that propagate near the surface region. Let the
medium be in z < 0 and the x axis is chosen as the propagation direction. We can
suppose the following forms

utα(x, z) = u
(0)
tα e

ik(x−cst)eκtz (α = x, y, z) (B.180)

ulα(x, z) = u
(0)
lα e

ik(x−cst)eκlz (α = x, y, z). (B.181)

with cs > 0. Equation (B.175) gives

−c2sk2 = c2t (−k2 + κ2) (B.182)

and thus

κt = k

√
1 −

(
cs
ct

)2

. (B.183)

Similarly, Eq. (B.176) gives

κl = k

√
1 −

(
cs
cl

)2

. (B.184)

For the decay property in the z direction, κt and κl should be positive (κt, κl > 0),
which requires

cs < ct < cl. (B.185)

The boundary condition at the surface (z = 0) is written as

σ̂nz = 0. (B.186)
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Here we define α as

α ≡ cs
ct
. (B.187)

After several calculations [132], we obtain the following relations;

u
(0)
ty = u

(0)
ly = 0 (B.188)(

u
(0)
tx

u
(0)
tz

)
= a

(
κt

−ik

)
,

(
u

(0)
lx

u
(0)
lz

)
= b

(
k

−iκl

)
(B.189)

a

b
= − 2 − α2

2
√

1 − α2
(B.190)

α6 − 8α4 + 8

(
3 − 2

c2t
c2l

)
α2 − 16

(
1 − c2t

c2l

)
= 0. (B.191)

Since the ratio ct/cl is a function of the Poisson ratio ν, as in Eq. (B.179), the
parameter α is a function of the Poisson ratio ν (α = α(ν)). Within the range of 0 ≤
ν ≤ 1/2, the numerical solution of Eq. (B.191) gives α uniquely as a monotonically
increasing function of ν. The range of α is 0.874 ≤ α ≤ 0.955 within the above range
of ν. It should be noted that the two components of surface wave, unlike those of
bulk wave, are not independent, on account of the surface boundary condition of
Eq. (B.186);

u
(0)
tx

u
(0)
lx

=
aκt

bk
= −

(
1 − c2s

c2t

)1/2
2 − α2

2
√

1 − α2
= −2 − α2

2
(B.192)

u
(0)
tz

u
(0)
lz

=
ak

bκl

= −
(

1 − c2s
c2l

)−1/2
2 − α2

2
√

1 − α2
. (B.193)
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C.1 Theory of elasticity in isotropic 2D medium

The theory of elasticity in isotropic 2D medium is briefly reviewed, particularly for
describing the theory of fracture. See a text [137] as a reference.

As in the 3D medium (See Eq. (B.124)), the strain energy in an isotropic 2D
medium is given as

U ≡ U0 +
λ0

2
(Tr[u])2 + µ0

∑
ij

u2
ij, (C.1)

where the summation runs over the planer components (x, y). In this appendix, the
components of the stress tensor are written as

σij ⇒
(
σx τxy

τxy σy

)
. (C.2)

The equation of balance is written in

∂σx

∂x
+
∂τxy

∂y
= 0,

∂σy

∂y
+
∂τxy

∂x
= 0. (C.3)

The condition of the compatibility (See Section B.3) is reduced to only one equation;

∂2uxx

∂y2
+
∂2uxx

∂y2
− 2

∂2uxy

∂x∂y
= 0. (C.4)

Stress and strain

The components of the stress are given, like Eq. (B.126), as⎛
⎜⎝ σx

σy

τxy

⎞
⎟⎠ =

⎛
⎜⎝ λ0 + 2µ0 λ0

λ0 λ0 + 2µ0

2µ0

⎞
⎟⎠

⎛
⎜⎝ uxx

uyy

uxy

⎞
⎟⎠ (C.5)

With a determinant

D ≡
∣∣∣∣∣ λ0 + 2µ0 λ0

λ0 λ0 + 2µ0

∣∣∣∣∣ = (λ0 + 2µ0)
2 − λ2

0 = 4µ0(λ0 + µ0), (C.6)

we obtain the components of the strain

uxx =
1

D
{(λ0 + 2µ0)σx − λ0σy} (C.7)

uyy =
1

D
{(λ0 + 2µ0)σy − λ0σx} (C.8)

uxy =
τxy

2µ0
. (C.9)

When Eqs. (C.7),(C.8),(C.9) are substituted into Eq. (C.4), we obtain

0 =
∂2uxx

∂y2
+
∂2uxx

∂y2
− 2

∂2uxy

∂x∂y

=
1

D

[
(λ0 + 2µ0)

∂2σx

∂y2
− λ0

∂2σy

∂y2

+(λ0 + 2µ0)
∂2σy

∂x2
− λ0

∂2σx

∂x2
−D

µ0

∂2τxy

∂x∂y

]
. (C.10)
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Here Eq. (C.3) is used for eliminate τxy and obtain

0 = (λ0 + 2µ0)
∂2σx

∂y2
− λ0

∂2σy

∂y2

+(λ0 + 2µ0)
∂2σy

∂x2
− λ0

∂2σx

∂x2

− D

2µ0

(
∂2σx

∂x2
+
∂2σx

∂x2

)

= (λ0 + 2µ0)

{
∂2σx

∂y2
+
∂2σy

∂y2
+
∂2σy

∂x2
+
∂2σx

∂x2

}

= (λ0 + 2µ0)

(
∂2

∂x2
+

∂2

∂y2

)
(σx + σy) , (C.11)

where we use the relation D/(2µ0) = 2λ0 + 2µ0 that is derived from Eq. (C.6).

Stress function (1)

Equations (C.3) and (C.11) are the conditions on the stress components. The stress
components can be expressed by a real function A ≡ A(x, y) as

σx =
∂2A

∂y2
(C.12)

σy =
∂2A

∂x2
(C.13)

τxy = − ∂2A

∂x∂y
. (C.14)

Equation (C.11) is reduced to the biharmonic property

∆2A = 0 (C.15)

of the function A. This function is called ‘Airy function’.
Here we transform the formula to those with the complex variable z ≡ x+iy. The

two independent variables (z, z̄) can be used instead of (x, y). Some mathematical
relations are listed

∂2

∂x2
=

∂2

∂z2
+ 2

∂2

∂z∂z̄
+

∂2

∂z̄2
, (C.16)

∂2

∂y2
= − ∂2

∂z2
+ 2

∂2

∂z∂z̄
− ∂2

∂z̄2
, (C.17)

∂2

∂x∂y
= i

(
∂2

∂z2
− ∂2

∂z̄2

)
, (C.18)

and so

4
∂2

∂z∂z̄
=

∂2

∂x2
+

∂2

∂y2
(C.19)

4
∂2

∂z2
=

(
∂2

∂x2
− ∂2

∂y2

)
− 2i

∂2

∂x∂y
. (C.20)
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Using Eqs. (C.19,C.20), we can write

4
∂2A

∂z∂z̄
= σx + σy (C.21)

4
∂2A

∂z2
= (σx − σy) + 2iτxy (C.22)

Hereafter we denote differentiation or integration as

f ′(z) ≡ df

dz
, f ′′(z) ≡ d2f

dz2
,

f (−1)(z) ≡
∫ z

dzf(z), f (−2)(z) ≡
∫ z

dz
∫ z

dzf(z).

In general, if a function f is holomorphic with respect to z, the relations

∂f

∂z̄
= 0 (C.23)

∂f

∂z
= f ′(z) (C.24)

are satisfied. The former one is the Cauchy-Riemann relation. The above relations
are essential to the following discussions.

From Eq. (C.15) and Eq. (C.19), we obtain

∂4A

∂z2∂z̄2
= 0. (C.25)

The function A is given by successive integrations of Eq. (C.25) with respect to z
or z̄;

∂3A

∂z∂z̄2
= f1(z̄) (C.26)

∂2A

∂z∂z̄
= f

(−1)
1 (z̄) + f2(z) (C.27)

∂A

∂z̄
= zf

(−1)
1 (z̄) + f

(−1)
2 (z) + f3(z̄) (C.28)

A = zf
(−2)
1 (z̄) + z̄f

(−1)
2 (z) + f

(−1)
3 (z̄) + f4(z), (C.29)

where f1, f2, f3, f4 are arbitrary holomorphic functions.
Since A(x, y) must be real (Ā = A), the above expression can be written as

A =
1

2

(
z̄φ(z) + zφ(z) + χ(z) + χ(z)

)
= Re [z̄φ(z) + χ(z)] , (C.30)

with holomorphic functions φ(z) and χ(z). The above functions φ and χ are called
‘Goursat functions’.

Using Eqs. (C.21) and (C.22), one can obtain

σx + σy

2
= 2

∂2A

∂z∂z̄

=

[
∂2

∂z∂z̄
(z̄φ+ χ) + c.c

]

= [φ′(z) + c.c]

= 2Re [φ′] (C.31)



212 APPENDIX C. CONTINUUM THEORY OF FRACTURE

and

σx − σy

2
+ iτxy =

∂2A

∂z2

=
∂2

∂z2

[
z̄φ+ χ + zφ̄+ χ̄

]
= z̄φ′ + χ′′. (C.32)

Therefore, the components of stress are expressed by the Goursat functions as

σx = 2Re [φ′] − xRe [φ′′] − yIm [φ′′] − Re [χ′′] (C.33)

σy = 2Re [φ′] + xRe [φ′′] + yIm [φ′′] + Re [χ′′] (C.34)

τxy = xIm [φ′′] − yRe [φ′′] + In [χ′′] . (C.35)

Stress function (2)

Other pairs of the stress functions can be used in stead of φ(z) and χ(z). One of such
pairs is called ‘Westergaard functions’, denoted as ZI(z) and ZII(z). The definition
is

ZI = 2φ′ + zφ′′ + χ′′ (C.36)

iZII = zφ′′ + χ′′ (C.37)

or

2φ = Z
(−1)
I − iZ

(−1)
II (C.38)

2χ′ =
{
Z

(−1)
I − zZI

}
+ i

{
Z

(−1)
II + zZII

}
. (C.39)

Here Eq. (C.38) is directly derived from the integrations of Eqs. (C.36) and (C.37).
Equation (C.38) is obtain, when we integrate Eq. (C.37);

2χ′ = 2iZ
(−1)
II − 2

∫
zφ′′dz

= 2iZ
(−1)
II − 2(zφ′ − φ)

= 2iZ
(−1)
II − 2zφ′ + 2φ

= 2iZ
(−1)
II − z(ZI − iZII) + (Z

(−1)
I − iZ

(−1)
II )

=
{
Z

(−1)
I − zZI

}
+ i

{
Z

(−1)
II + zZII

}
,

where the fourth equality is given by Eq. (C.38) and its derivative.
The components of the stress are given as

σx = Re[ZI ] − yIm[Z ′
I ] + 2Im[ZII ] − yRe[Z ′

II ]

σy = Re[ZI ] + yIm[Z ′
I ] + −yRe[Z ′

II ]

τxy = −yRe[Z ′
I ] + Re[ZII ] − yIm[Z ′

II ]. (C.40)

Since the above forms will be reduced to simple ones on y = 0, the Westergaard
functions are useful for the crack analysis, in which the crack lies on y = 0.



C.1. THEORY OF ELASTICITY IN ISOTROPIC 2D MEDIUM 213

As a simple case, a uniform stress field

(σx, σy, τxy) = (σ(0)
x , σ(0)

y , τ (0)
xy ) (C.41)

is expressed by the following constant functions

ZI(z) = σ(0)
y

ZII(z) = τ (0)
xy + i

σ(0)
x − σ(0)

y

2
, (C.42)

where σ(0)
x ,σ(0)

y and τ (0)
xy are real constants. Note that the imaginary constant term

of ZI does not contribute the stress fields.
Using the Westergaard functions, the Airy function, given as Eq. (C.30), is writ-

ten as

A = Re
[
Z

(−2)
I − iyZ

(−1)
I − yZ

(−1)
II

]
= Re

[
Z

(−2)
I

]
+ yIm

[
Z

(−1)
I

]
− yRe

[
Z

(−1)
II

]
. (C.43)

The derivation of Eq. (C.43) is as follows; when we integrate Eq. (C.39), we obtain

χ =
1

2

[
ZI −

∫
zZIdz + iZII + i

∫
zZIIdz

]

=
1

2

[
Z

(−2)
I − (zZ

(−1)
I − Z

(−2)
I ) + iZ

(−2)
II + i(zZ

(−1)
II − Z

(−2)
II )

]

= Z
(−2)
I − 1

2
z(Z

(−1)
I − iZ

(−1)
II ). (C.44)

On the other hand, Eq. (C.38) gives

z̄φ =
1

2
z̄(Z

(−1)
I − iZ

(−1)
II ). (C.45)

When Eqs. (C.44) and (C.45) are substituted into Eq. (C.30), we obtain Eq. (C.43).

Stress field with a crack

Now we would like to show the stress function for the stress field with a crack. The
crack lies on the finite line connecting z = −c and z = c, where c is a positive value.
Three polar axes are defined as

z = rOe
iθO , z − c = rAe

iθA , z + c = rBe
iθB (C.46)

and the variables

θ̄ ≡ θA + θB
2

, r̄ ≡ √
rArB (C.47)

are also defined. All the angles should satisfy −π < θO, θA, θB, θ̄ < π. The geometry
is shown in Fig. C.1.

A stress function is proposed as

ZI = σ0
z√

z2 − c2
, ZII = 0. (C.48)
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Figure C.1: Geometry of the three polar axes (rO, θO), (rA, θA), (rB, θB).

The branch cut is chosen at the crack region, that is, the line connecting z = −c and
z = c. This choice define the function

√
z2 − c2 as a single-value function without

the crack region;
√
z2 − c2 =

√
rA

√
rBe

iθA/2eiθB/2 = r̄eiθ̄, (C.49)

whose asymptotic behavior is
√
z2 − c2 ≈ z, (|z| � c). (C.50)

Eq. (C.40) is reduced to, with the fact of y = r0 sin θO,

σx = Re[ZI ] − rO sin θO Im[Z ′
I ]

σy = Re[ZI ] + rO sin θO Im[Z ′
I ]

τxy = −rO sin θO Re[Z ′
I ]. (C.51)

Hereafter we show that the function in Eq. (C.48) gives the stress field of a crack
under an external uniform stress field. As an asymptotic behavior, the stress function
is reduced to

ZI = σ0, Z ′
I = 0 at |z| � c, (C.52)

which gives the uniform stress field of

(σx, σy, τxy) = (σ0, σ0, 0) at |z| � c. (C.53)

Using the above polar axes, we obtain

ZI = σ0
z

(z2 − c2)1/2
= σ0

rO
r̄
ei(θO−θ̄) (C.54)

and

Z ′
I = σ0

1

(z2 − c2)1/2
− 1

2

2z2

(z2 − c2)3/2

= σ0
1

(z2 − c2)1/2

(
1 − z2

z2 − c2

)

= σ0
−c2

(z2 − c2)3/2
= σ0

−c2
r̄3

e−3iθ̄. (C.55)
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or ⎛
⎜⎝ σx

σy

τxy

⎞
⎟⎠ = σ0

rO
r̄

⎛
⎜⎜⎝

cos(θO − θ̄) − c2

r̄2 sin θO sin 3θ̄

cos(θO − θ̄) + c2

r̄2 sin θO sin 3θ̄
c2

r̄2 sin θO cos 3θ̄

⎞
⎟⎟⎠ (C.56)

Eq. (C.56) satisfy the free surface boundary

σy = 0, τxy = 0 at y = 0,−c < x < c (C.57)

because of

θO = 0, θ̄ = π/2 at y = 0. (C.58)

From the above analysis, we can conclude that the stress function in Eq. (C.56)
shows a situation of a crack under the external uniform stress field in Eq. (C.53).

For the situation of the opening mode or ‘mode I’, the stress field should satisfy

(σx, σy, τxy) = (0, σ0, 0) at |z| � c, (C.59)

not Eq. (C.53). The desirable stress functions are given by

ZI = σ0
z√

z2 − c2

ZII = −iσ0

2
. (C.60)

The above functions can be decomposed into two terms. One gives the stress field
of Eq. (C.56) and the other gives the uniform stress field of Eq. (C.41) with the
choice of (σ(0)

x , σ(0)
y , τ (0)

xy ) = (−σ0, 0, 0). The resultant stress field is the sum of that
of Eq. (C.56) and

(σx, σy, τxy) = (−σ0, 0, 0), (C.61)

which satisfies the boundary conditions Eqs. (C.57) and (C.59).
Now we show the stress field near the crack tip (z ≈ c). We redefine the notation

rA ⇒ r, θA ⇒ θ σ0 ⇒
K√
πc
. (C.62)

In the region near the crack tip (r 
 c), the expressions

rB ≈ 2c, θB ≈ 0 (C.63)

are obtained, which results in

r̄ ≈
√

2cr, θ̄ ≈ θ

2
. (C.64)

The expressions for (rO, θO) should be based on the relations

y = rO sin θO = r sin θ (C.65)

x = rO cos θO = r cos θ (C.66)

rO ≈ c, (C.67)
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which results in

sin θO =
r

rO
sin θ ≈ r

c
sin θ (C.68)

cos θO =
1

rO
(c+ r cos θ) ≈ c

rO
≈ 1. (C.69)

Using the above expressions, the essential terms in Eq. (C.56) are calculated

cos(θO − θ̄) = cos θO × cos θ̄ − sin θO × sin θ̄

≈ 1 × cos
θ

2
− r

c
sin θ × sin

θ

2
≈ cos

θ

2
(C.70)

c2

r̄2
× sin θO ≈ c2

2cr
× r

c
sin θ

=
1

2
sin θ = cos

θ

2
sin

θ

2
(C.71)

σ0 ×
rO
r̄

=
K√
πc

× c√
2cr

=
K√
2πr

. (C.72)

When the above expressions are substituted into Eq. (C.56), we obtain

⎛
⎜⎝
σx

σy

τxy

⎞
⎟⎠ ≈ K√

2πr
cos

θ

2

⎛
⎜⎝

1 − sin θ
2
sin 3θ

2

1 + sin θ
2
sin 3θ

2

sin θ
2
cos 3θ

2

⎞
⎟⎠ , (C.73)

which diverges at the crack tip (r = 0). Since the stress field in Eq. (C.61), a
constant field, does not diverge, the asymptotic stress field near the crack tip is
given by Eq. (C.73) for the ‘mode I’ crack. The factor K is usually called ‘stress
intensity factor’ for the ‘mode I’ crack.
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C.2 Theories of fracture

In this section, the continuum theory for brittle fracture is briefly reviewed. For the
overview, see references [90, 91, 92, 93]. Usually three basic ‘modes’ of crack-surface
displacement are distinguished, which are schematically shown in Fig. C.2. Among
them, we pick out the ‘mode I’ or the opening mode, which is the most important
mode for the fracture propagation in highly brittle solids. Hereafter we consider the
situation shown in Fig.C.3(a), in which the uniaxial external load σ is imposed on
a sample with a crack. The crack length is denoted as 2c.

Figure C.2: Schematic pictures of the three fracture modes. (a) mode I or the
opening mode, (b) mode II or the sliding mode, (c) mode III or the tearing mode.
The arrow indicates the direction of displacements. In (c), the displacements of the
upper and lower peaces are perpendicular to the paper in the opposite directions.

Figure C.3: (a) Schematic picture of a sample with a crack under the external load.
The length of the crack is defined as 2c. The red circle is just a eye guide for a
circular area with the radius of c. (b) The magnification of the region near the crack
tip (r 
 c).
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Asymptotic stress field

The first fundamental concept for fracture is the asymptotic stress field at the crack
tip [138]. The two dimensional polar axis (r, θ) is used (x = r cos θ, y = r sin θ), of
which origin is chosen at the crack tip, as in Fig.C.3(b). With the above axis, the
stress tensor elements σxx, σxy(= σyx), σyy are expressed near the crack tip (r 
 c)
as

σij(r, θ) =
K√
2πr

fij(θ). (C.74)

K ≡ σ
√
πc, (C.75)

where fij(θ) is proper functions and σ is the external stress. K is called ‘stress
intensity factor’. The derivation of Eq. (C.74) is given in Appendix C.1 with the
explicit forms of fij(θ). Here the fracture toughness, denoted as Kc, is defined as
the critical value of K for the fracture propagation. The fracture toughness Kc can
be observed experimentally.

The stress field given in Eq. (C.74) diverges at the crack tip (r = 0). This
divergence originates in the large deformation at the region near the crack tip, which
is beyond the theory of linear elasticity. Several energetic descriptions beyond linear
elasticity were proposed for describing the local region near the crack tip. The size
and the atomistic picture of such a local region may be different among materials.
See the textbooks listed in the beginning of this section.

Griffith theory

The second work is the Griffith theory [89], in which an energy competition is
essential within the total energy of

U = −πc
2σ2

E
Lz + 4γcLz. (C.76)

The first term is the energy gain of the strain relaxation, while the second term is the
loss of the surface formation energy. Here Lz and E are the sample thickness and the
Young modulus. The present Young modulus E is one within a two-dimensional case
and corresponds to E = E3D in plane stress (‘thin’ plates) or E = E3D/(1 − ν2) in
plane strain (‘thick’ plates), with the ordinary Young modulus E3D and the Poisson
ratio ν. The quantity γ is the loss of the surface formation energy per unit surface
area. The factor πc2 in the first term is the area of the dashed circle in Fig.C.3(a),
of which radius is given by c. The factor appears, when one assumes that the crack
with the length of 2c releases the strain energy within the circular area of the dashed
circle in in Fig.C.3(a). The factor 4c in the second term originates from the fact
that the two cleavage surfaces are formed as the upper and lower surfaces of the
crack plane and each surface has the length of 2c.

The total energy U shows a peak at

0 =
dU

dc
= −πσ

2

E
2cLz + 4γLz, (C.77)

which gives a length quantity cG as

c = cG ≡ 2

π

γE

σ2
. (C.78)
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If the external load σ is given, the value of the length cG is determined uniquely. The
length cG gives the critical crack length for the spontaneous fracture propagation.
The essence is the fact that the first term in Eq. (C.76) is a volume term that is
proportional to (length)3, while the second term is a surface term that is proportional
to (length)2. Therefore, dimensional analysis gives a typical length scale cG. This
energy competition between volume and surface terms is analogous to the theory of
nucleation, which is seen in textbooks of statistical mechanics [101].

With the definition of the fracture toughness Kc, Eq. (C.75) and Eq. (C.78) give
an important relation

(cG =)
K2

c

σ2π
=

2

π

γE

σ2
, (C.79)

or

K2
c = 2γE. (C.80)

Equation (C.80) shows the direct relation between the fracture toughness Kc and
the surface formation energy γ.

The validity of Eq. (C.80) was investigated in the cleaved Si(111) surface [102]. In
results, the value of γ is estimated to be γ ≈ 1.1[J/m2] within the factor of two [102].
Equation (C.80) with the above value of γ gives a consistent explanation between
the results of electronic structure calculations and several experimental results. The
corresponding atomistic picture was discussed in Section 6.1.

Since the essence of the Griffith theory is dimensional analysis, the energy term 4
γc is essential only in its linear dependence on the crack length. In other words, the
factor γ can be generally defined as a ‘dissipative’ energy that is required in the frac-
ture propagation by the unit length. For such generalizations and the corresponding
atomistic picture, see the textbooks listed in the beginning of this section.

Mott theory

Third concept is the Mott theory [139], in which the kinetic energy term K is
introduced in the total energy. In fracture dynamics, the release of the strain energy
should be transformed into the local kinetic energy of atoms, as well as the surface
formation energy. The explicit form of K is given by

K =
ρ

2
kv2c2

σ2

E2
Lz, (C.81)

where v is the crack propagation speed. ρ is the density and k is a numerical factor.
The dependence of v on c is now ignored for a stationary solution (v = (const)).
Using the kinetic energy of Eq. (C.81), the speed v is determined by

d

dc
(U +K) = 0. (C.82)

Now the static energy per unit thickness (U/Lz) is rewritten as

U

Lz
= −πc

2σ2

E
+ 4γc

= −πσ
2

E
(c− cG)2 +

πσ2

E
c2G. (C.83)
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with the critical crack length cG. Equation (C.82) is calculated as

0 =
1

Lz

d

dc
(U +K)

=
d

dc

(
−πσ

2

E
(c− cG)2 +

πσ2

E
c2G +

ρ

2
kv2c2

σ2

E2

)

= −2πσ2

E
(c− cG) + kρv2c

σ2

E2
, (C.84)

or

v =

√
2π

k

√
E

ρ

(
1 − cG

c

)1/2

. (C.85)

With increasing the crack length (c � cG), the value of v in Eq. (C.85) will reach
the stationary solution of

v →
√

2π

k

√
E

ρ
(c� cG). (C.86)

Here we note that
√
E/ρ is the elastic wave speed. Later theoretical works [140,

141, 91] predict that the crack propagation speed can not exceed the Rayleigh wave
speed, which is seen experimentally. Since the above prediction is within continuum
mechanics, its validity is sometimes focused in atomistic pictures, such as Ref.[142].
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D.1 Conventional Wannier state in one-dimensional

system

In this appendix, we focus on the conventional Wannier state, not the generalized
Wannier state explained in Section 2.3.

Suppose a one-dimensional system with an isolated band, in which the Schrödinger
equation has the solution of Bloch states;

H|ψk〉 = ε(k)|ψk〉. (D.1)

The length of the unit cell is denoted as a. Since the Bloch states is periodic in
reciprocal space

ψk+2π/a(x) = ψk(x), (D.2)

they can be expanded within Fourier series;

ψk(x) =
∞∑

l=−∞
Wl(x)e

ilka. (D.3)

Similarly, the dispersion curve ε(k) can be also expanded with the Fourier series;

ε(k) =
∞∑

l=−∞
ε(W)(l)eilka. (D.4)

Due of the mathematical relation∫ π

−π
ei(l−l′)θdθ = 2πδl,l′, (D.5)

Eq. (D.3) gives

Wl(x) =
∫ π/a

−π/a

dk

(2π/a)
e−ilkaψk(x), (D.6)

which correspond to the definition of the conventional (isolated-band) Wannier state.
Note that the region −π/a < k < π/a is the first Brillouin zone and the factor 2π/a
is its volume (

∫
(1.B.Z.) dk = 2π/a).

If we define the length of L ≡ aN with an integer N , the inner product between
the Wannier states can be defined as

〈Wl|Wl′〉L ≡
∫ L

0
Wl(x)Wl′(x)dx

=
∫ π/a

−π/a

dk

(2π/a)

∫ π/a

−π/a

dk′

(2π/a)
eilkae−il′k′a〈ψk|ψk′〉L. (D.7)

If we impose the normalization condition on the Wannier state

〈Wl|Wl〉L = 1, (D.8)

the Bloch states should satisfy the following condition

〈ψk|ψk′〉L =
2π

a
δ(k − k′). (D.9)
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With respect to the Wannier states, the Hamiltonian matrix is given as

〈Wl|H|Wl′〉L =
∫ π/a

−π/a

dk

(2π/a)

∫ π/a

−π/a

dk′

(2π/a)
eilkae−il′ka〈ψk|H|ψk〉L

=
∫ π/a

−π/a

dk

(2π/a)

∫ π/a

−π/a

dk′

(2π/a)
eilkae−il′ka2π

a
ε(k)δ(k − k′)

=
∫ π/a

−π/a

dk

(2π/a)
ei(l−l′)kaε(k)

= ε(W)(l − l′), (D.10)

where the last equality is given by Eq. (D.4). In short, the off-diagonal Hamiltonian
matrix with respect to the Wannier state is given by the Fourier coefficients of the
dispersion curve ε(k).
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D.2 Density matrix in free electron system

In this appendix, we derive several equations given in Section 2.4. All the notations
are the same as in Section 2.4;

(i) Equation (2.54) is derived as follows;

E

V
=

∫
k<kF

dk

(2π)3

1

2
k2

= 4π
∫ kF

0
k2 1

2
k2 dk

(2π)3

=
1

(2π)2

∫ kF

0
k4dk

=
1

(2π)2

k5
F

5
=

k5
F

20π2
. (D.11)

(ii) Equation (2.56) is derived as follows;

ρ(r) ≡ V
∫

dk

(2π)3

1

V
eik·(r1−r2)

=
1

(2π)3

∫ kF

0
k2dk(2π)

∫ 1

−1
dteikrt

=
1

(2π)2

∫ kF

0
k2

[
eikrt

ikrt

]t=1

t=−1

dk

=
1

(2π)2

∫ kF

0
k2 e

ikr − e−ikr

ikr
dk

=
1

(2π)2

∫ kF

0
k22

sin kr

kr
dk

=
2

(2π)2r

∫ kF

0
k sin krdk

=
2

(2π)2r

⎧⎨
⎩
[
−k cos kr

r

]kF

0

+
1

r

∫ kF

0
cos krdk

⎫⎬
⎭

=
2

(2π)2r

⎧⎨
⎩
[
−k cos kr

r

]kF

0

+

[
sin kr

r2

]kF

0

⎫⎬
⎭

=
2

(2π)2

{
−kF

r2
cos kFr +

1

r3
sin kFr

}
. (D.12)

(iii) Equation (2.58) is derived as follows;

ρ(r) ∝ −kF

r2
cos kFr +

1

r3
sin kFr

= −kF

r2

[
1 − k2

F

2
r2 +

k4
F

24
r4 +O(r6)

]

+
1

r3

[
kFr −

k3
F

6
r3 +

k5
F

120
r5 +O(r7)

]
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= (−kF + kF)
1

r2
+

(
k3

F

2
− k3

F

6

)
+

(
−k5

F

24
+

k5
F

120

)
r2 +O(r4)

=
k3

F

6
− k5

F

30
r2 +O(r4)

= C0 −
C2

2
r2 +O(r4), (D.13)

where the last equality is obtained with the notations of Eqs. (2.59).
(iv) Using the relation

r2dρ

dr
=

2

(2π)2

(
−C2r

3 +O(r5)
)
, (D.14)

Eq. (2.61) is derived as follows;

Esphere(ε) ≡
∫

r<ε
dr

−∆r

2
ρGS(r)

=
−1

2
4π

∫ ε

0
r2dr

1

r2

(
d

dr
r2dρ

dr

)

= −(2π)

[
r2dρ

dr

]r=ε

r=0

= −(2π)
2

(2π)2

[
−C2ε

3
]
+O(ε5)

=
C2

π
ε3 +O(ε5). (D.15)
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D.3 Lanczos method

This appendix is a brief review of the Lanczos method [143], which gives the foun-
dation of the recursion method [51] (See Section 2.5). The Lanczos method is also
used in the variational order-N method (See Section 5.2).

Suppose an Hamiltonian operator Ĥ or an explicit M ×M Hamiltonian matrix
H . From an ‘input’ (normalized) vector |u〉, we can construct a set of vectors

|u〉, H|u〉, H2|u〉, ..., H(N−1)|u〉, (D.16)

where N is an integer (N ≤ M). In general, the above set of vectors contains
N independent freedoms. Though the above vectors are not orthogonal, we can
transform them into a orthogonal vectors, as follows; If a vector |v〉 is defined as

|v〉 ≡ (1 − |u〉〈u|)H|u〉, (D.17)

the vector |v〉 is orthogonal to the vector |u〉;

〈u|v〉 = 〈u|{1 − |u〉〈u|}H|u〉
= 〈u|H|u〉 − 〈u|u〉〈u|H|u〉 = 0 (D.18)

Based on the above fact, an orthogonal basis set {|uj〉}j ( j = 1, 2....., N) can be
constructed;

|u1〉 ≡ |u〉 (D.19)

b1|u2〉 = H|u1〉 − a1|u1〉 (D.20)

bn|un+1〉 = H|un〉 − an|un〉 − b∗n−1|un−1〉 (D.21)

where

an ≡ 〈un|H|un〉 (D.22)

bn ≡ 〈un+1|H|un〉 (D.23)

Using the above recurrence relation, the vectors are successively generated

|u1〉 ⇒ |u2〉 ⇒ |u3〉 ⇒ |u4〉...., (D.24)

and the set of resultant vectors satisfy the orthogonal relation

〈ui|u〉j = δij. (D.25)

In the case of N = M , the resultant set of the vector {ui} forms a M ×M unitary
matrix U as

U ≡ (u1 u2 u3 ...uM ) . (D.26)

This procedure is, formally, one of the tridiagonalization procedure of H ;

U−1HU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1
b∗1 a2 b2

b∗2 a3 b3
... ... ...

b∗M−1 aM−1 bM
b∗M aM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (D.27)
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Hereafter the discussion is restricted, for simplicity, to the case with real variables
(b∗i = bi). With N < M , an operator Ĥ ′ is defined as

Ĥ ′ ≡
N∑
i,j

|ui〉H ′
ij〈ui| (D.28)

with the matrix H ′
ij of

H ′
ij ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1
b1 a2 b2

b2 a3 b3
... ... ...

bN−2 aN−1 bN−1

bN−1 aN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

ij

(D.29)

The operator Ĥ ′ satisfies

Ĥ ′|ui〉 = Ĥ|ui〉 (i = 1, 2, ....N − 1). (D.30)

In the Lanczos method, the matrix H ′ is discussed, instead of H . The eigen value
problem of Ĥ ′ is given as⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε− a1 −b1
−b1 ε− a2 −b2

−b2 ε− a3 −b3
... ... ...

−bN−2 ε− aN−1 −bN−1

−bN−1 ε− aN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

P0

P1

P2

...
PN−2

PN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (D.31)

Let the function ∆n(ε) represent the determinant of the partial matrix that contains
only the first n rows and columns of the tridiagonal matrix in Eq. (D.31). The eigen
values {εα} are given by the zeros of ∆N(ε);

∆N (ε) = 0 ↔ ε = ε0, ε1, ...., εN−1 (D.32)

The functions {∆1(ε),∆2(ε)...} has the recurrence relation of

∆n+1(ε) = (ε−an)∆n(ε) − b2n∆n−1(ε), (D.33)

which is proved by the Laplace expansion. For example, Eq. (D.33) with n = 3 is
given by the following calculations∣∣∣∣∣∣∣∣∣

ε−a0 −b1
−b1 ε−a1 −b2

−b2 ε−a2 −b3
−b3 ε−a3

∣∣∣∣∣∣∣∣∣
= (ε−a3)

∣∣∣∣∣∣∣
ε−a0 −b1
−b1 ε−a1 −b2

−b2 ε−a2

∣∣∣∣∣∣∣ + b3

∣∣∣∣∣∣∣
ε−a0 −b1
−b1 ε−a1 −b2

−b3

∣∣∣∣∣∣∣
= (ε−a3)

∣∣∣∣∣∣∣
ε−a0 −b1
−b1 ε−a1 −b2

−b2 ε−a2

∣∣∣∣∣∣∣− b23

∣∣∣∣∣ ε−a0 −b1
−b1 ε−a1

∣∣∣∣∣ . (D.34)
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If we define formally ∆0(ε),∆−1(ε) as

∆0(ε) ≡ 1, ∆−1(ε) ≡ 0, (D.35)

Eq. (D.33) is satisfied for n ≥ 0,
For each eigen value εα, the eigen vector (P0, P2, P3....) is given by

(εα − an)Pn(εα) = bn+1Pn+1(εα) + bn−1Pn−1(εα), (D.36)

because of Eq. (D.33). On the other hand, we can define, generally, {Pn(ε)} as

(ε− an)Pn(ε) = bn+1Pn+1(ε) + bn−1Pn−1(ε) (D.37)

for any value of ε. With the additional definition of

P−1(ε) ≡ 0, P0(ε) ≡ 1, (D.38)

the function Pn(ε) is determined uniquely as the n-th order polynomials of ε. When
Eqs. (D.33), (D.35) are compared with Eqs. (D.37), (D.38), we obtain

∆n(εα) = b1b2b3...bnPn(ε). (D.39)

In other words, the polynomial Pn(ε) is proportional to the determinant ∆n(εα).
An eigen vector

Ĥ ′|wα〉 = εα|wα〉 (D.40)

is given by

|wα〉 =
N−1∑
n=0

Pn(εα)|un〉

= |u〉 + P1(εα)|u1〉 + P2(εα)|u2〉 + .... (D.41)

This eigen vector is not normalized (〈wα|wα〉 �= 1) but has a property

〈u|wα〉 = 1. (D.42)

With the norm

|wα| ≡
√
〈wα|wα〉, (D.43)

the normalized eigen vectors { |wα|−1|wα〉} gives the equivalence operator

1̂′ =
N∑
α

|wα〉
|wα|

〈wα|
|wα|

(D.44)

for the vector space of {|un〉}. The density of states n̂′(ε) for Ĥ ′ is defined by

n̂′(ε) ≡ δ(ε− Ĥ ′), (D.45)
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as the operator. Equation (D.44) gives the projected DOS for the vector |u〉 as

n′
11(ε) ≡ 〈u|δ(ε− Ĥ ′)|u〉

=
N∑
α

〈u|wα〉
|wα|

δ(ε− εα)
〈wα|u〉
|wα|

=
N∑
α

1

|wα|2
δ(ε− εα). (D.46)

Equation (D.44) also gives the projected Green function as

G′
11(ε+ i0) ≡ 〈u| 1

ε+ i0 − Ĥ ′ |u〉

=
N∑
α

〈u|wα〉
|wα|

1

ε+ i0 − εα

〈wα|u〉
|wα|

=
N∑
α

1

|wα|2
1

ε+ i0 − εα

(D.47)

From Eqs. (D.46) and (D.47), we can see

n′
11(ε) =

−1

π
Im [G′

11(ε+ i0)] . (D.48)

Finally, the projected Green function G′
11(ε+ i0) is given as a continued fraction;

Let us define Dn(ε) as the determinant of the partial matrix of the tridiagonal matrix
in Eq. (D.31) in the sense that it does not contain the first n rows and columns. For
example,

D0(ε) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ε− a1 −b1
−b1 ε− a2 −b2

−b2 ε− a3 −b3
... ... ...

−bN−2 ε− aN−1 −bN−1

−bN−1 ε− aN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (D.49)

D1(ε) ≡

∣∣∣∣∣∣∣∣∣∣∣∣

ε− a2 −b2
−b2 ε− a3 −b3

... ... ...
−bN−2 ε− aN−1 −bN−1

−bN−1 ε− aN

∣∣∣∣∣∣∣∣∣∣∣∣
. (D.50)

The Laplace expansion gives the recurrence relation of

Dn(ε) = (ε−an+1)Dn+1(ε) − b2n+1Dn+1(ε). (D.51)

Since the inverse of a matrix A is given, with the cofactor Ãij , as

(A−1)ij =
1

detA
Ãij , (D.52)
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the projected Green function

G′
11(ε) ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε− a1 −b1
−b1 ε− a2 −b2

−b2 ε− a3 −b3
... ... ...

−bN−2 ε− aN−1 −bN−1

−bN−1 ε− aN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

11

, (D.53)

is calculated as

G′
11(ε) =

D1(ε)

D0(ε)
. (D.54)

With Eq.( D.51), we obtain

G′
11(ε) =

D1(ε)

D0(ε)

=
D1(ε)

(ε−a1)D1(ε) − b21D2(ε)

=
1

(ε−a1) − b21
D2(ε)

D1(ε)

. (D.55)

When we use Eq.(D.51) successively, the projected Green function is obtained in
the continuum fraction form of

G′
11(ε) ≡ 〈u| 1

ε− Ĥ ′ |u〉

=
1

ε−a1 −
b21

ε−a2 −
b22
...

(D.56)

Equations (D.56) and (D.48) give the projected DOS n′
11(ε) without calculating

eigen values nor eigen vectors.
In practical calculations, the projected Green function for H , not H ′, is given as

〈u| 1

ε+ i0 −H
|u〉 ≈ 1

ε−a1 −
b21

ε−a2 −
b22....

ε− aN − b2N
TN(ε)

(D.57)

with the function TN (ε) called ‘terminator’. Explicit function forms of TN(ε) are
given in textbooks.
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D.4 Verlet algorithm in molecular dynamics

For the numerical integration of the Newton equation in the molecular dynamics
simulations, we use the velocity-Verlet algorithm, the velocity version of the Verlet
algorithm [144]. This section is devoted to a brief description of the velocity-Verlet
algorithm for the micro-canonical and canonical ensembles.

Algorithm for micro-canonical ensemble

First we introduce the velocity-Verlet algorithm for the micro-canonical ensemble.
We consider a system with NA classical particles, where the total energy and the
Newton equation are given by

E =
∑
I

MI

2
ṘI

2
+ U({RI}) (D.58)

R̈I = AI ≡ − 1

MI

∂U

∂RI
, (D.59)

respectively. The corresponding velocity-Verlet algorithm is as follows

ṘI(t) = ṘI(t−h) +
h

2
{AI(t) + AI(t−h)} +O(h3) (D.60)

RI(t+h) = RI(t) + hṘI(t) +
h2

2
AI(t) +O(h3) (D.61)

These are equivalent to the second order Taylor expansion, which is seen using the
relation AI(t) = AI(t−h) + hȦI(t−h) +O(h2). The flow chart of calculations are
given by

⇒ RI(t) ⇒ AI(t) ⇒ ṘI(t) ⇒ RI(t+h) ⇒ (D.62)

The error of the total-energy conservation at the n-th MD time step (t = nh) is
estimated as

δEn ≡ E(nh) − E((n−1)h) ∝ h3 (D.63)

for one MD step. For a finite time evolution with a finite time-interval τ , the number
of MD steps is ν ≡ (τ/h). So the errors at all MD steps are summed up to be

E(τ=νh) − E(0) =
ν∑
n

δEn ∝ νh3 =
(
τ

h

)
h3 = τh2 (D.64)

Algorithm for canonical ensemble

Now we turn to explain the finite-temperature dynamics within the Nosé ‘ther-
mostat’ method [123, 124]. We do not derive the formulation and just show the
resultant Newton equation with the temperature T ;

R̈I = AI − η̇ṘI (D.65)

η̈ =
1

Q

[∑
I

MIṘI
2 − 3NAkBT

]
. (D.66)
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The conserved energetic quantity is given by

H∗ =
∑
I

MI

2
ṘI

2
+ U({RI}) +

Q

2
η̇2 + 3NAkBTη, (D.67)

where the third and fourth terms can be interpreted as the kinetic and potential
energies of the ‘thermostat’ freedom η. The parameter Q corresponds to the mass
of the ‘thermostat’. One can prove that the time average of the present dynamics
gives the ensemble average in the canonical ensemble [123, 124]. As a practical
viewpoint, if we choose a proper value for Q, the ‘thermostat’ works well and the
kinetic energy is expected to be almost constant:

∑
I

MI

2
ṘI

2 ≈ 3

2
NAkBT. (D.68)

The corresponding velocity-Verlet algorithm is as follows;

η̇(t) = η̇(t− h)

+
h

2Q

[∑
I

MIṘI(t)
2
+

∑
I

MIṘI(t− h)
2 − 6NAkBT

]
(D.69)

ṘI(t) = ṘI(t−h)

+
h

2

[
AI(t) + AI(t−h) − η̇(t)ṘI(t) − η̇(t−h)ṘI(t−h)

]
(D.70)

η(t+ h) = η(t) + hη̇(t) +
h2

2Q

[∑
I

MIṘI(t)
2 − 3NAkBT

]
(D.71)

RI(t+ h) = RI(t) + hṘI(t) +
h2

2

[
AI(t) − η̇(t)ṘI(t)

]
. (D.72)

Equations (D.69) and (D.70) are implicit formula and are rewritten as

0 = η̇(t) − η̇(t−h) − h

2Q

[
K +

K∗

(1 + h
2
η̇(t))2

− 6NAkBT

]
(D.73)

ṘI(t) =
1

1 + h
2
η̇(t)

W I(t), (D.74)

respectively, where

K ≡
∑
I

MIṘI
2
(t−h) (D.75)

K∗ ≡
∑
I

MIW I
2(t) (D.76)

W I(t) ≡
{

1 − h

2
η̇(t−h)

}
ṘI(t−h) +

h

2
{AI(t) + AI(t−h)} . (D.77)

Equation (D.73) is the equation for x ≡ η̇(t) and is solved iteratively using the
Newton-Raphson method;

x(j+1) = x(j) − f(x(j))

f ′(x(j))
(D.78)
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where j is the number of the iterations and

f(x) ≡ x− η̇(t−h) − h

2Q

⎡
⎣K +

K∗

(1 + h
2
x)

2 − 6NAkBT

⎤
⎦ (D.79)

f ′(x) = 1 +
h2

2Q

K∗

(1 + h
2
x)3

. (D.80)

This iterative algorithm needs a proper initial value x(0) and we choose the value to
be

x(0) = η̇(t−h) +
h

Q

[∑
I

MIṘI
2
(t−h) − 3NAkBT

]
, (D.81)

which is given by Eq.(D.69) under the assumption of

∑
I

MIṘI
2
(t−h) ≈

∑
I

MIṘI
2
(t). (D.82)

The algorithm is summarized as follows, where the variables {RI(t), ṘI(t−
h),RI(t−h),AI(t),AI(t−h), η̇(t−h), η(t−h)} are already obtained:

1. Calculate η̇(t) using the Newton-Raphson method with Eq. (D.78) and the
initial value of Eq. (D.81).

2. Calculate {ṘI(t)} using Eq. (D.74).

3. Determine η(t+h) and {RI(t+h)} using Eqs. (D.71) and (D.72) .

Note that if we set the values of η and η̇ to be zero at the all time steps, Eqs.(D.70)
and (D.72) are reduced to Eqs.(D.60) and (D.61).
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the solid states, ed. P. Lödin, Academic Press, London, 263 (1966).

[31] E. Steiner, The determination and interpretation of molecular wave funtions,
Cambridge University Press (1976).

[32] N. Marzari and D. Vanderbilt, Phys. Rev. B56, 12847 (1997).

[33] S. Fujinaga, Bunshi-kidou hou (Molecular orbital methods), Iwanami Shoten,
Tokyo [Written in japanese] (1980).

[34] T. Hughbanks and R. Hoffmann, J. Am. Chem. Soc. 105, 3528 (1983).

[35] R. Dronskowski and P. E. Blöchl, J. Phys. Chem 97, 8617 (1993).

[36] W. Kohn, Phys. Rev. Lett. 76, 3168 (1996).

[37] S. Goedecker, Phys. Rev. B58, 3501 (1998).

[38] G. B. Arfken and H. J. Weber, Mathematical methods for physicists, fourth
ed., Academic Press, San Diego (1995).

[39] S. Roche, Phys. Rev. B59, 2284 (1999).

[40] RIKEN REVIEW 29, (2000).

[41] P. Ordejón, Comp. Mat. Sci. 12, 157 (1998).

[42] S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999).

[43] G. Galli, Phys. Stat. Sol. (b) 217, 231 (2000).



BIBLIOGRAPHY 237

[44] S. Y. Wu and C. S. Jayanthi, Phys. Rep. 358, 1 (2002).

[45] D. R. Bowler, M. Aoki, C. M. Goringe, A. P. Horsfield and D. G. Pettifor,
Modelling Simul. Mater. Sci. Eng. 5, 199 (1997).

[46] X. P. Li, R. W. Nunes, and D. Vanderbilt, Phys. Rev. B47, 10891 (1993).

[47] R. McWeeny, Rev. Mod. Phys. 32, 335 (1960).

[48] S. Goedecker and L. Colombo, Phys. Rev. Lett. 73, 122 (1994).

[49] S. Goedecker and M. Teter, Phys. Rev. B51, 9455 (1995).

[50] D. G. Peffifor, Phys. Rev. Lett. 63, 2480 (1989).

[51] R. Haydock, The recursive solution of the Schrödinger equaiton’, in Solid state
physics, ed. H. Ehrenreich, F. Seitz, D. Turnbull 35, 215 (1980).

[52] R. Takayama, T. Hoshi, and T. Fujiwara, in preparation .

[53] L. D. Landau and E. M. Lifshitz, Quantum mechanics (non-relativistic theory),
3rd ed., Pergamon Press, Oxford (1976).

[54] N. W. Ashcroft and N. D. Mermin, Solid state physics, Saunders College,
Philadelphia (1976).

[55] W. Stich, E. K. U. Gross, P. Malzacher, and R. M. Dreizler, Z. Phys. A 309,
5 (1982).

[56] R. M. Dreizler and E. K. U. Gross, Density functional theory, Springer-Verlag,
Berlin (1990).

[57] M. Pearson, E. Smargiassi, and P. A. Madden, J. Phys.: Condens. Matter 5,
3221 (1993).

[58] J. A. Anta, B. J. Jesson, and P. A. Madden, Phys. Rev. B58, 6124 (1998).

[59] J. C. Phillips, Rev. Mod. Phys. 42, 317 (1970).

[60] J. S. Slator and G. F. Koster, Phys. Rev. B94, 1498 (1954).

[61] P.Vogl, H. P. Hjalmarson, and J. D. Dow, J. Phys. Chem. Solids 44, 365
(1983).

[62] W. A. Harrison, Electronic structure and the properties of solids, W. H. Free-
man and Company, San Fransisco (1980).

[63] I. Stich, R. Car, and M. Parrinello, Phys. Rev. Lett. 63, 2240 (1989).

[64] C. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho, J. Phys. Condens. Matter
4, 6047 (1992).

[65] D. J. Chadi, Phys. Rev. Lett. 43, 43 (1979).



238 BIBLIOGRAPHY

[66] A. Ramstad, G. Brocks, and P. J. Kelly, Phys. Rev. B51, 14505 (1995).

[67] R. A. Wolkow, Phys. Rev. Lett. 92, 2636 (1992).

[68] D. J. Chadi, J. Vac. Sci. Technol. 16, 1290 (1979).

[69] D. J. Chadi and M. L. Cohen, Phys. Status. Solidi (b) 68, 405 (1975).
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