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A hybrid scheme between large-scale electronic structure calculations is developed and applied to
nanocrystalline silicon with more than 105 atoms. Dynamical fracture processes are simulated under
external loads in the [001] direction. We show how the fracture propagates anisotropically on the (001)
plane and reconstructed surfaces appear with asymmetric dimers. Step structures are formed in larger
systems, which is explained by the beginning of a crossover between nanoscale and macroscale samples.
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Silicon is an ideally brittle material and its fracture
behavior is studied intensively, because we can obtain
essentially dislocation-free single crystals. A pioneering
theory of brittle fractures was given, in the 1920’s, by
Griffith1) within a continuum theory, which is the foundation
of the present understanding of brittle fractures.2) The
fracture in single crystals should also be investigated in
atomistic pictures, on the points of how and why the fracture
path is formed and propagates in the crystalline geometry.
This point includes surface reconstruction processes. Since
fracture is a thermal nonequilibrium process, the atomic
structure on a cleavage surface may be different from that on
equilibrium clean surfaces. For example, the easiest cleavage
plane in macroscale samples of silicon is the (111) plane, in
which the surface structure is not the ground-state (7� 7)
structure but a metastable 2� 1 structure.3,4)

This letter is focused on the study of atomistic fracture
behaviors in nanocrystalline silicon, particularly, its possible
difference from macroscale samples. Such a difference can
be expected, as explained below; now a typical atomistic
length in silicon is defined as d0 �

ffiffiffiffiffi
v03

p � 3 �A, where v0
gives the volume per atom. The essence of the Griffith
theory1) is the energy competition between the energy gain of
strain relaxation and the energy loss of surface formation.
The former energy is a volume term proportional to (length)3,
while the latter energy is a surface term proportional to
(length)2. Analogous to the theory of nucleation,5) dimen-
sional analysis gives the critical crack length for spontaneous
fracture propagation. The critical crack length cG is given
as1,2)

cG �
�E

�2
ð1Þ

with the stress �, the Young modulus E (�102 GPa), and the
surface energy per unit area �. The value of � was estimated
to be on the order of 1 J/m2,6,7) which can be reduced to the
bond breaking energy (�d20 � 1 eV) in the atomistic picture.
In a recent experiment with macroscale samples,8) the stress
is � � 101 MPa and eq. (1) gives a macroscale length
(cG � 1mm). Since the length cG is not dependent on the
sample size L, the fracture behavior can be expected to be
different from the above picture, when the sample size L is
smaller than the critical length cG (L < cG). In this letter, we
will discuss such a situation in nanocrystalline silicon, in

which the numbers of atomic layers for these lengths
(�cG=d0; L=d0) are not macroscale numbers.

For atomistic fracture simulations of silicon crystals, a
recent work of classical modelings9) was carried out with
105 atoms. A more recent work,7) however, pointed out the
limited applicability of classical modelings and the impor-
tance of electronic structure calculations. On the other hand,
there are several ab initio calculations with 102 atoms.6,7) Due
to the system size of simulations, these investigations are
limited in certain situations, such as the preparation of the
initial cleavage plane in which the reconstructed surface
structure is assumed. Therefore, large-scale electronic struc-
ture calculations are essential.

So far, we have developed several order-N methods for
large-scale electronic structure calculations.10) The term
order-N method is the general name of methods in which
the computational cost is proportional to the system size (N).
We have developed variational and perturbative order-N
methods based on generalized Wannier states.10,11) A
Wannier state �i is localized and the index i denotes its
localization center. The equation for wave functions is
identical in the two methods and is given by the one-body
density matrix ð� �

Pocc.
i j�iih�ijÞ.10) In the computational

algorithm, the perturbative method is simpler than the
variational method. Figure 1 demonstrates our large-scale
calculation with 102–106 atoms.

With the above two methods, we now construct a novel
hybrid scheme, in which the variational method is used only
for the wave functions whose centers locate near fracture
regions. The regions typically contain 4� 104 electrons.
Some of such wave functions change their character
dynamically from the bulk (sp3 bonding) state to the surface
states, as discussed later. The other wave functions, in bulk
regions, maintain the character of the bulk bonding state and
can be obtained by the perturbative method. The wave
functions f�ig calculated by the two methods are both used
for constructing the one-body density matrix �. Any physical
quantity is expressed by the density matrix10) and is well
defined in the present hybrid scheme.

The present work is based on a transferable tight-binding
Hamiltonian with s and p orbitals.12) It is used for several
crystalline phases and noncrystalline phases, such as liquid12)

and surfaces.13) Since fracture is the formation of surfaces in
a bulk region, the theory should reproduce the atomic
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structures in both bulk and surface phases, which is satisfied
by the present Hamiltonian. The essence of the quantum
mechanical freedoms is the fact that sp3-hybridized bonds
are formed in the bulk region, but not on surfaces. To analyze
the hybridization freedom, the parameter f ðjÞ

s is defined, for a
wave function �j, as

f ðjÞ
s �

X

I

jh�jjIsij2; ð2Þ

where jIsi is the s orbital of the I-th atom. For example, fs ¼
1=4 in an ideal sp3-hybridized state.

In this letter, we focus on the Si(001) surface, a standard
template of the modern silicon technology. A characteristic
feature of the Si(001) surface is the formation of asymmetric
dimers.14,15) The asymmetric dimer is connected by a ‘�’
bonding state. Another state is localized on the ‘up’ atom, the
dimerized atom near the vacuum region. This localized state
is called ‘�’ state, because the direction of its p components
is nearly perpendicular to the dimer bond. Here an energy
quantity is defined as

�"(cov)i � h�ijHj�ii  f ðiÞ
s "s þ ð1 f ðiÞ

s Þ"p
� �

: ð3Þ

A negative value of�"(cov)i corresponds to the energy gain of
covalent bonding. The ‘�’ state has the gain of �"(cov)i �
2 eV, which mainly contributes to the dimerization energy
(approximately 2 eV).15) The ‘�’ state has much smaller
�"(cov)i , which is comparable to the energy difference
between the asymmetric and symmetric dimers (the order
of 0.1 eV).15)

The simulation details are as follows; the hybrid order-N
scheme is used for systems with 104 atoms or more. In
smaller systems, the variational method is used in the entire
region. The samples are isolated tetragonal clusters, whose
geometries are labeled with the number of atomic layers,
such as n100 � n010 � n001 or n110 � n1�110 � n001. As the
boundary condition, the Wannier states on the sample
surfaces are terminated by fixed sp3 bonding states and are
not reconstructed. The time step of the molecular dynamics is
3 fs. The total kinetic energy is controlled to be that with
300K by the Nose thermostat method.16) Numerical accuracy

is confirmed among bulk, surface and fracture properties,
such as the elastic constants, the dimer formation on the clean
(001) surface, and the critical stress for fracture. The last
quantity is confirmed in smaller samples by the comparison
with the result of the exact diagonalization method. The
calculated fracture propagation velocity is always in the same
order of, but less than, the Rayleigh surface wave velocity
(4.5 km/s), as expected from the continuum theory.2)

For fracture propagations, external loads in the [001]
direction are imposed. During the simulations, the external
loads are dynamically controlled by the atoms on the sample
surfaces in the z direction. These atoms are fixed or under
artificial constant-velocity motions in the z axis. The velocity,
typically 102 km/s, is much smaller than the observed
fracture propagation velocities (km/s). As a seed of fractures,
a short range repulsive potential is imposed on one particular
pair of atoms, as a defect bond. For smaller samples, the
simulations begin without initial deformations. The fracture
always occurs with the external loads on the order of � �
1GPa, which corresponds to the strain energy of �d30 �
0:1 eV per atom. For larger samples, the simulations begin
with initial static deformations in the above magnitude of
external loads. The length cG in eq. (1) is calculated as cG �
100 nm, which is longer than the present sample sizes (L �
20 nm).

In results, a two-stage reconstruction process is commonly
observed as the elementary process during successive bond
breakings; in Fig. 2(a), we monitor the one-electron energy
"i � h�ijHj�ii and the hybridization freedom f ðiÞ

s of a
Wannier state j�ii. Before bond breaking (t < 0 ps), the
wave function j�ii is a bonding state in the bulk region,
deformed due to the external load. At t � 0 ps, a bond
breaking occurs and the wave function j�ii loses the bonding
character with a rapid increase in bond length. Then (0 ps <
t < 0:2 ps), a twofold coordinated surface atom is formed,
since another bond is broken almost simultaneously. The
wave function j�ii forms a lone pair state that is stabilized by
an increase in f ðiÞ

s (0:6 ! 0:8). The corresponding energy
gain is estimated to be 0:2� ð"p  "sÞ � 1:3 eV, which
explains the energy gain in the figure ("i ¼ 2:7 eV !
3:8 eV). In other words, the bond breaking process is
caused by the local electronic instability, that is, the energy
competition between the loss of the bonding (transfer) energy
and the gain due to the increase in the weight of the s orbitals
(fs). Finally, after the thermal motions with a finite time

Fig. 2. (a) Elementary reconstruction process with the one-electron energy

"i and the weight on s orbitals f
ðiÞ
s . (b) An asymmetric dimer on a resultant

crack. The black rod and black ball correspond to the ‘�’ and ‘�’ states,

respectively.

Fig. 1. Computational time for bulk silicon as a function of the number of

atoms, up to 1423909 atoms. The CPU time is measured for one time step

in the molecular dynamics (MD) simulation. A tight-binding Hamiltonian

is used with the perturbative order-N method and the exact diagonalization

method. We use a standard workstation with a single CPU and 2GB of

RAM.
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(t � 0:4 ps), a pair of twofold coordinated atoms forms an
asymmetric dimer with a � bonding state j�ii. The corre-
sponding covalent-bonding energy, defined in eq. (3), is
�"(cov)i � 1:9 eV. This energy explains the gain in the
figure ("i ¼ 3:8 eV ! 4:8 eV) and the energy loss (ap-
proximately 1.3 eV) due to a decrease in f ðiÞ

s (0:8 ! 0:6).
This asymmetric dimer is preserved until the end of the
simulation, during a couple of pico seconds. Figure 2(b)
shows an example of the observed asymmetric dimers.

Figure 3 shows the fracture process of a cubic sample with
4501 atoms. Each Wannier state is classified from its weight
distribution into a bonding or atomic orbital, which is shown
as a rod or a ball in the figures, respectively. A black rod or
ball corresponds to a bonding or atomic orbital in the layer
that contains the defect bond. One almost flat (001) surface is
being created with many asymmetric dimers. The surface
contains, however, many twofold coordinated atoms that
have two back bonds (white rods) and a lone pair state (black
ball). This is because a lone pair state are metastable, as
discussed above. In Fig. 3, an anisotropic bond-breaking
propagation is seen in the [110] and [1�110] directions,
particularly in the early snapshots. In the [110] direction,
successive bond breakings propagate along nearest neighbor
bond sites, which forms a zigzag path, shown as black rods in
Fig. 4(a). A bond breaking process significantly weakens
nearest neighbor bonds, due to the local electronic insta-
bility, as observed in Fig. 2(a). Therefore, the successive
bond breakings propagate easily in the [110] direction. In the
[1�110] direction, on the other hand, bond-breaking paths are
not connected, shown as red rods in Fig. 4(a). In this
direction, the bond breakings propagate by the local strain
relaxation, not by the local electronic instability. As a result,
the bond breaking propagation along the nearest neighbor
bond sites (in the [110] direction of the present surface) is
faster than that in the perpendicular direction (in the [1�110]
direction), due to the difference in successive bond-breaking
mechanisms. Note that a flat (001) surface is also obtained by
a similar simulation without the initial defect bond, in which
the fracture begins at the sample edges.

Figures 4(b) and 4(c) show larger samples with step

formations.17) In the two cases, all the conditions are the
same, except for the sample size. To observe the step
structures clearly, the broken bond sites are shown as rods in
the ideal crystalline geometry. The defect bond is located in
the center of the drawn area. The anisotropic fracture
propagation in one (001) plane increases the anisotropic
strain energy.18) The anisotropy originates from the inequi-
valence between the [110] and [1�110] directions within one
(001) layer. Since the above inequivalence does not appear
within two successive layers, a step formation between them
will release the anisotropic strain energy. In Fig. 4(b), a step
is formed between the layer of black rods and that of red rods.
In the [110] direction, the bond-breaking propagation reaches
the sample surfaces without step formations. In the [1�110]
directions, the bond breakings propagate slower and a step is
formed in the central area at an early period of the crack
propagation. After that, the fracture propagates among the
two atomic layers. Since the two layers are symmetrically
equivalent, the resultant step formation path is almost a line
in the [100] or [010] direction as the boundary of the
fractured areas between the two layers.

In Fig. 4(c), the largest sample used in the present letter
shows that the above line structure does not reach the sample
surfaces but is canceled with additional step formations in
complicated paths. The sample size dependence of the step
structures is explained by the beginning of the crossover
between nanoscale and macroscale samples; if the sample
contains so many atoms, the geometry of the resultant crack
will be almost circular, as in Fig. 4(c), so as to minimize the
anisotropic strain energy.18) If not, the strain energy is
accumulated only within the confined bulk region due to the
finite sample size. The resultant fracture behavior is directly
related to the anisotropic atomic structure of the cleaved
surface, as in Fig. 4(b).

Since the above mechanism of step formations is two-
dimensional, the present samples may be nanoscale ‘thin’
samples. In larger or thicker samples, an expected fracture
behavior is the bending of the fracture plane into the (111)
plane, the easiest cleavage plane in macroscale samples,
which is the crossover in the present context. In a sufficiently

Fig. 3. Snapshots of a fracture process in the (001) plane. The sample size is n100 � n010 � n001 ¼ 33� 33� 33 (4501 atoms). The time interval between

two successive snapshots is 0.3 ps, except that between (f) and (g) (approximately 1.3 ps). A set of connected black rod and black ball corresponds to an

asymmetric dimer, as in Fig. 2(b). The lower left area has not yet been fractured.
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large sample, the fracture mode with the easiest cleavage
plane will grow regardless of sample shape and details of
conditions. Note that the dynamical simulation with
105 atoms is the practical limitation within a single CPU
workstation. A program code with parallel computations is
now being developed for simulations with large samples.

This letter shows a possible difference in fracture
behaviors among nanoscale and macroscale silicon crystals.
Its origin is the size dependence of the energy competition
between bulk and surface regions. The electronic structures
between the two regions are essentially different and can be
described by the present method with the well-defined total
energy. This energy competition is also inherent in other
phenomena, such as crystal growth and self-organizations,
which may be candidates for applications of the present
method.
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7) R. Pérez and P. Gumbsch: Phys. Rev. Lett. 84 (2000) 5347.

8) T. Cramer, A. Wanner and P. Gumbsch: Phys. Rev. Lett. 85 (2000) 788.

9) D. Holland and M. Marder: Phys. Rev. Lett. 80 (1998) 746.

10) T. Hoshi and T. Fujiwara: J. Phys. Soc. Jpn. 69 (2000) 3773.

11) T. Hoshi and T. Fujiwara: Surf. Sci. 493 (2001) 659.

12) I. Kwon et al.: Phys. Rev. B 49 (1994) 7242.

13) For example, C.-C. Fu, M. Weissmann and A. Saúl: Surf. Sci. 494

(2001) 119.

14) D. J. Chadi: Phys. Rev. Lett. 43 (1979) 43.

15) A Ramstad, G. Brocks and P. J. Kelly: Phys. Rev. B 51 (1995) 14504.

16) S. Nose: Mol. Phys. 52 (1984) 255.

17) The steps on the (001) surface are classified into four types [D. J. Chadi:

Phys. Rev. Lett. 59 (1987) 1691]. The present surfaces, however,

contain unreconstructed domains and are different from the above ones.

18) The elastic property of silicon crystal shows only a small anisotropy

within the (001) plane; the [110] and [�1110] directions are equivalent

and the values of the Young modulus are different by only

approximately 30% in the [100] and [110] directions.

Fig. 4. (a) Ideal diamond structure with colored bond sites. (b)(c) Geometry of resultant cracks in the (001) plane. The broken bond sites are plotted as

colored rods in the ideal (crystalline) geometry. Rods within one layer are painted within the same color, as in (a). The layer of black rods contains the defect

bond at its central area. Atoms are plotted as dots. The sample sizes in (b) and (c) are n110 � n1�110 � n001 ¼ 49� 50� 49 (30025 atoms) and 97� 100� 49

(118850 atoms), respectively. In (c), only the central area (n110 � n1�110 ¼ 58� 60) of the sample is shown. Note that the length of n110 ¼ 50 atomic layers is

approximately 10 nm.
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