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Fully-Selfconsistent Electronic-Structure Calculation
Using Nonorthogonal Localized Orbitals within a Finite-Difference
Real-Space Scheme and Ultrasoft Pseudopotential
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We construct a fully-selfconsistent formalism of ab initio electronic-structure calculations,
where basis orbitals are localized, nonorthogonal, and given on a real-space regular grid. A
window function is adopted to optimize localized basis orbitals. As an example, the ground
state of diamond crystal is calculated using the ultrasoft pseudcpotential.
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After the great success of the Car-Parrinello (C-P)
method,’™3) a new era has begun for ab initio electronic-
structure calculations, or electronic-structure calcula-
tions within the density-functional theory (DFT).% %)
The C-P method has been improved in various aspects,
one of which is the development of methods for applica-
tions to large systems. The C-P scheme is based on the
plane-wave basis and soft pseudopotentials® ") or the ul-
trasoft pseudopotential®1!) can actually reduce the num-
ber of basis plane waves. In the present C-P scheme, as a
result, a typical system size is some hundreds of atoms in
a periodic cell for silicon, or approximately one hundred
atoms for other elements.

Another important step toward large-scale calcula-
tions is the ‘order-N’ scheme, where the algorithms are
designed so that the computational cost is O(V), or lin-
early proportional to the system size N. Hereafter we de-
note N as the number of occupied (valence) one-electron
states in a periodic cell for a bulk system. For the ‘order-
N’ scheme, two issues are essential; one is a formulation
without explicit orthogonalization or matrix-inversion
procedures, because these procedures have O(N?3) CPU
time. Mauri et al.'>13) overcame this difficulty by intro-
ducing a new energy functional in the variational proce-
dure called ‘unconstrained minimization’ (UM).

The other issue is to construct a localized basis set,
because the present C-P scheme consumes O(N? log, V)
CPU time for the Fast Fourier Transform (FFT) proce-
dures of all orbitals.?3) To avoid this difficulty, we could
use a tight-binding formalism with fixed local basis func-
tions, but the application of local basis functions to fully-
selfconsistent treatment is not trivial. Local bases appli-
cable to fully-selfconsistent calculations may be given on
a real-space regular grid, or on uniform mesh points in a
Cartesian coordinate. A DFT calculation with such real-
space regular grids is given by Chelikowsky and cowork-
ers'416) and is called ‘finite-difference (FD) real-space
scheme’, where the kinetic-energy operator, or the Lapla-
cian operator, must be a finite difference on real-space
grids. In our previous works,!7:18) we constructed a foun-
dation of the FD real-space scheme with an ezact FD

formula for the kinetic-energy operator and using a new
preconditioning operation, where some results show an
excellent agreement with those by the current plane-wave
scheme. However, this scheme is based on a global grid
mesh in real space and could not be directly applied to
the local-basis formulation.

We present in this paper (i) a general formalism of
nonorthogonal local bases, applicable to the FD real-
space scheme and (ii) a way to construct localized basis
orbitals on a real-space regular grid. These are essential
to a fully-selfconsistent ‘order-N’ method. Basic ideas for
achieving these goals are, respectively, (i) the UM formu-
lation explicitly using nonorthogonal orbitals, and (ii) a
window-function technique for constructing localized ba-
sis orbitals. The present method is applied to diamond
crystal using the ultrasoft pseudopotential.8-11)

First we explain an application of the unconstrained-
minimization (UM) technique!? ®) to nonorthogonal ba-
sis sets. In the DFT theory® % with orthogonal basis
orbitals {¢}, the total electronic energy Eiot is

N
Eiot = 22 <¢k 'T + Vl\'ff’
&

1/Jk> + Eruxcln], (1)

Epuxc(n] E/dergocn(T)"(T)

+%//drdr’ﬁg)f£'2+Exc[n]' (2)

|7 — ']

Here, 2N is the total (valence) electron number per pe-
riodic cell and the charge density n(r) is defined as

n(r) =2 gk (r)yu(r), (3)

and the integration [n(r)dr = 2Tr[S] = 2577 Skk is
always equal to the correct value 2N. The orthogonal-
ization constraint S;; = (/;|¢;) = d;; should be satisfied
in the variational procedure, so this formalism requires
an explicit orthogonalization procedure, such as the
Lagrange-multiplier technique or the Gram-Schmidt’s
procedure, which consumes O(N?3) CPU time. Hereafter
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we call this formalism the ‘constrained minimization’.

The UM technique!?13) was proposed so as to release
the orthogonalization constraint and omit explicit or-
thogonalization steps in the variational procedure. This
fundamental idea is based on a new variational proce-
dure without any explicit orthogonalization procedure,
and introduces a new energy functional Eyy

Eyy = QiAij <¢i ¢j>
ij

+ ELHXC[TL] + 2uAN, (4)

T+ Vi

N N

2

ANEN—ZAZ]S” :EISZ‘]' _5ij| . (5)
ij ij

Here, the matrix A;; is defined as A;; = 25,;1-‘ — Sj; or

A? =21 — S and I is the unit matrix. The charge density

is redefined as

n(r) =2 Z Aij; (r);(r), (6)

and their integration [ n(r)dr is not necessarily equal
to the correct value 2N. The parameter p must be ap-
propriately chosen, and Mauri et al.'?1%) showed that
the minimization of Fyy leads to the true ground state,
when the parameter p is chosen to be larger than the
highest occupied level (i > en).

Here, we comment on the UM formalism. (i) Once the
matrix A is set to be A* = §71, the formalism is equiv-
alent to the ‘constrained minimization’ formalism, and
requires a matrix-inversion procedure instead of explicit
orthogonalization procedures. (ii) The definition A* =
21 — S corresponds to the lowest expansion of the series
S ={I-(I-9)}! = I+(I-8)+(I-8)*+(I—5)3+....
(iii) The minimization of the term 2p4AN in the energy
functional (4) requires an iterative orthogonalization pro-
cedure (S;; — d;;). When orthogonalization is achieved
(Si]‘ = (52']' thus A,jj = 25” — Sj,’ = (52']'), the minimization
of Eyy is, again, identical to the ‘constrained minimiza-
tion’ formalism and requires neither explicit orthogonal-
ization procedures nor matrix-inversion procedures. (iv)
The quantity 2AN = 2N—231% A;;Si; = 2N— [ n(r)dr
is a deviation of the charge from the correct value, and
so one may see that the energy functional (4) works as
a ‘ground-canonical’ potential and that the parameter p
works as a ‘chemical potential’.

This UM procedure can be generalized to the frame-
work of the localized basis orbitals. We expand the phys-
ical orbitals {1}, or the valence wavefunctions, into local-
ized basis orbitals {¢}, just as in the linear combination
of atomic orbitals (LCAOQ) approximation,

M
Yi(r) = Zcii’¢i’ (). (M

Here {¢} are basis orbitals localized in real space and as-
sumed to be centered on atomic sites. The total number
of the localized basis orbitals {¢}, M, is not necessarily
equal to the number of occupied one-electron states N.
We chose M = 2N in our test calculation, which is dis-
cussed later. When we substitute eq. (7) into egs. (4),
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(5) and (6), we obtain, respectively,
M
Bun=2) B <¢i lT + T ¢j>
ij
+ Ernxc[n] + 2uAN, (8)
M
AN =N - Bj;;Sy, (9)
ij
and
M
n(r) =2 B¢} (r)g;(r). (10)

ij

Here, matrix B;; is defined as B;; = Zﬁj, ciricirj A
and [n(r)dr = 2Tx[B!S] = 225\;[ B;;S;j. This proce-
dure is equivalent to that by Hernandez et al.,'9) based
on the density matrix approach with a model local po-
tential. The only difference in the energy functional is
the form of B;; or a choice of variational parameters in
the actual procedure. One should refer to a comment on
this point in section IIC of their paper.!®)

Note that in our actual test calculation with the
ultrasoft pseudopotential,®!!) the definitions (3), (6)
and (10) are also replaced, respectively, by n(r) =

2y <¢k }S(T)’ ¢k>, n(r) = 230 Aij <¢i lﬁ(f)) ¢j>
and n(r) = 2 Zf\;f B;; <¢i ‘5’(7")‘ ¢j>, respectively. Here
the operator S is defined® as

(¢:]5()|s) = 8i(r)s;(r)
+ 3 QL (r) (0] BL) (BL1¢5) , (11)

Inm

where I indicates an atom, and suffixes n and m indicate
reference states in an atom. The overlap matrix S;; is
redefined as

S = / dr(6:|5(r)| ;)
= (Bild;) + D ahmles| BB |65),

Inm

(12)

where ¢!, = [drQL,.(r). See the original work® for
more details.

Second, we explain how to generate localized basis or-
bitals within the FD real-space scheme. To construct
localized orbitals on a real-space regular grid, we adopt
a window-function technique, which allows us to opti-
mize the forms of localized basis orbitals instead of fixing
them. A localized orbital ¢; could be generated from an
extended orbital ¢; by

¢i(r) = wi(r)di(r).

Here, we introduce a window function w; to localize ba-
sis orbitals within a spherical region around an ion. The
form of a window function must depend only on the dis-
tance from the ion position R that the localized orbital
belongs to, i.e., w(r) = w(|r — R|)(|r — R| > Ry), and is
zero outside the local ‘cell’, i.e., w(|r — R|) = 0(|r— R| <
Ry). The parameter Ry, is the radius of the local cell.

(13)
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The implementation of a window function guaran-
tees the locality of ¢; in a spherical local-cell region
(Ir = R| < Ry) and satisfies the (Dirichlet) boundary
condition. The resultant variational procedure should be
achieved with respect to {¢} and {c;»}. The variations
with respect to the orbitals {¢} correspond to the opti-
mization of the local basis function on a real-space reg-
ular grid and those with respect to the coefficients {c;i }
correspond to the determination of eigen states. Though
é is, in principle, an extended function, its components
in the outer region (|r — R| > Ry) do not contribute to
the total energy and so we can neglect these components
in actual computational procedures.

The energy variation with respect to ¢ is reduced to

SE _ b6¢i(r) SE SE

7.0~ s anm - w1

(5@5,’(1’)’

and guarantees the locality of ¢ if the initial functions of
{#} are localized. In our calculation, we use the ultrasoft
pseudopotential, where (T'+ Vi$)|¢) is not localized in a
local cell. Therefore this formalism of the window func-
tion is essential to optimize the localized basis orbitals
on a regular grid. The window-function technique is also
advantageous in force calculations, which is important
in a molecular-dynamics simulation. Because a local-
ized orbital ¢ depends on the position of the ion R only
through the window function w(|r — R|), the derivatives
of orbitals with respect to positions of ions are reduced
to

Op;(r i(T) -
) ) g, (19)

which could calculate the Pulay force straightforward.
We must note that the present formulation is an inter-
mediate scheme between a tight-binding formalism and
a fully-selfconsistent (DFT) formalism with a complete
basis set, in the sense that, if we fix basis orbitals {¢}
and the charge density n(r), the formalism is reduced
to the tight-binding formulation. One interesting ap-
plication of the present formalism is a calculation with
‘partially fixed’ basis orbitals. For many calculations,
such as surface structures and defects in solids, almost
all atoms are the same as in a bulk system, except those
near a surface or a defect. In such a ‘bulk’ region, local-
ized basis orbitals could be fixed to be ‘bulk’ states in a
good approximation. This saves CPU time and memory
space for computation. Even in this case, the calcula-
tion can be fully-selfconsistent, because the Hamiltonian
is exactly equal to that of the DFT with no parameters.
We tested the present formalism numerically on the
ground state of diamond crystal, using thé ultrasoft pseu-
dopotential®!?) and the local-density approximation
(LDA) with the Perdew-Zunger exchange-correlation po-
tential 2®) and used the cubic supercell containing 8
atoms, where the edge length of a periodic cell L is
L = 6.727 atomic unit (a.u.). We use the double-grid
technique in the ultrasoft pseudopotential,®'!) where the
spacings of the real-space grid h are h = 0.42 a.u. for or-
bitals and 0.21 a.u. for the charge density. As in our pre-
vious works,'7-18) with the constrained minimization and
‘the FD real-space scheme, the FFT procedures are used
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Fig. 1. Localized basis orbitals {¢} in diamond crystal, as a func-

tion of the distance from the atom (atomic unit), optimized by
the present variational procedure: (a) initially s-Gaussian (b)
initially p.-Gaussian. The orbitals {¢} are normalized. '

to generate the potential from the charge density n(r).
These procedures do not consume CPU time, whereas,
in the current plane-wave scheme, the FFT procedures
of all orbitals dominate CPU time.

Four localized orbitals ¢; for each atom are prepared,
and their initial forms are chosen to be (s-, pz-, py-, p-)
atom-centered Gaussian forms, as those in Hernandez
et al. The basis orbitals are optimized in the varia-
tional procedure of eq. (8). The actual forms of s- and
p.- Gaussians, for instance, are ¢s = exp(—r?/R?) and
¢p. = zexp(—r?/R?), respectively, where the width of
Gaussian R is R = 2.018 a.u. The number of valence or-
bitals {1} for a carbon atom is two, and so the choice of
four localized basis orbitals {¢} per atom corresponds
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to M = 2N. A window function w(r) is chosen as
w;(r) = cos(§x-) inside a local cell (r < Rp), and
w;(r) = 0 outside (r > Rp). The radius of the local
cell Ry is Ry = 3.3635 a.u.

The resultant ground-state energy per atom F is ' =
5.602 a.u./atom, which agrees satisfactorily with the
value of E = 5.617 a.u./atom in our previous work,!: 18)
calculated using the constrained minimization and the
FD real-space scheme. For comparison, we also calcu-
lated using ‘fixed’ local basis orbitals, where localized
orbitals {¢} are fixed to be the initial Gaussian forms
and only coefficients {c;} are optimized in the vari-
ational procedure. The resultant ground state energy
E =5.204 a.u./atom is worse than the result calculated
with optimized {¢}. Therefore, the optimization of {¢}
is crucial and we should retain the possibility of the op-
timization of the localized orbitals {¢}.

Figure 1 shows the resultant or optimized form of {¢}
on a real-space mesh. It is clear that the initially s-
Gaussian orbital keeps the s-symmetry in the ground
state, while the initially p,-Gaussian orbitals are mixed
with pz- and py- Gaussian orbitals. These behaviors of
the localized basis orbitals, with the ultrasoft pseudopo-
tential, are very similar to those shown in the Fig. 2 in
Hernandez et al.,'® where the ground state of silicon is
calculated with a model local pseudopotential.

In summary, we construct foundations for a fully-
selfconsistent ‘order-N’ scheme, within the F'D real-space
scheme. The essential foundations are (i) the variational
principle with respect to nonorthogonal localized orbitals
and (ii) the construction of localized orbitals on real-
space regular grids. The former issue is resolved by ap-
plication of the UM technique to the nonorthogonal basis
set and the latter issue is resolved by introducing a win-
dow function to localize basis orbitals. The formulation
is tested numerically on the ground state of diamond
crystal with ultrasoft pseudopotential and shows satis-
factory agreement with the conventional method.
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