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Letters

Theory of Composite-Band Wannier States and Order-N

Electronic-Structure Calculations
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From the order-N electronic-structure formulation, a Hamiltonian is derived, of which the
lowest eigen state is the generalized or composite-band Wannier state. This Hamiltonian maps
the locality of the Wannier state to that of a virtual impurity state and to a perturbation from
a bonding orbital. These theories are demonstrated in the diamond-structure solids, where the
Wannier states are constructed by a practical order-N algorithm with the Hamiltonian. The
results give a prototypical picture of the Wannier states in covalent-bonded systems.
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Recently, the Wannier state (WS) has been re-
focused as a foundation of the order-N methods, linear-
scaling methods for large-scale electronic-structure cal-
culations.1, 2) The original concept of WS’s is defined
within a single isolated band under the periodic bound-
ary, but is now generalized to systems with compos-
ite bands and/or non-periodic boundaries.1-4) This let-
ter is devoted to the fundamental theories of WS’s in
composite-band systems.

The generalized WS’s can be defined, in insulators, as
localized one-electron states that satisfy

Hψk =

N∑
j=1

εkjψj , (1)

where N is the number of occupied states. Equation
(1) is derived from a variational procedure within a
single Slater determinant. The parameters εij are the
Lagrange multipliers for the orthogonality constraints
〈ψi|ψj〉 = δij and satisfy εji = 〈ψi|H|ψj〉. The above
definition does not uniquely determine the wavefunc-
tions. The resultant set of one-electron states {ψi} has
a ‘gauge’ freedom in the sense that any physical quan-
tity is invariant under the unitary transforms with re-
spect to the occupied states ψi → ψ′i ≡

∑N
j=1 Uijψj ,

where U is a unitary matrix. If this ‘gauge’ is fixed so
as to diagonalize the matrix εij , we obtain the set of

the eigen states {ψ(eig)
k }, or the Bloch states in the pe-

riodic boundary; Hψ
(eig)
k =ε

(eig)
k ψ

(eig)
k , where {ε(eig)

k } are
the eigen energies. With WS’s, the matrix εij is not
diagonal, but its trace gives the correct band-structure
energy E0 ≡

∑N
k=1 ε

(eig)
k =

∑N
k=1 εkk.

The diamond-structure solids, C, Si, Ge and α-Sn,
are typical composite-band systems. For such materi-
als, nearest-neighbor tight-binding (TB) Hamiltonians
can be constructed sp3-hybridized orbitals, where
the hopping along a bond is dominant. The correspond-
ing hopping integral is half of the difference between the

within

energy level of an antibonding orbital (εa) and that of
a bonding orbital (εb); ∆ab ≡ εa − εb. If all the other
hoppings are ignored, the TB Hamiltonian is diagonal
with respect to bonding and antibonding orbitals;

H0 =

N∑
k=1

(|bk〉εb〈bk|+ |ak〉εa〈ak|) . (2)

Here, the k-th bonding and antibonding orbitals
|bk〉, |ak〉 are defined by the pair of sp3 orbitals on the
k-th bond. The WS’s for H0 are just the bonding or-
bitals {|bk〉}k=1,N , and this simple picture is the start-
ing point of the present theory. In the present iterative
calculations of the WS’s, the bonding orbitals are chosen
as the initial states. Since all the bonds are symmetri-
cally equivalent in the diamond structure, the resultant
energy levels of the WS’s {εkk} have the unique value

εWS ≡ (1/N)
∑N
j=1 ε

(eig)
j , which is the weighted center

of the valence band.
Another important hopping in the diamond structure

is that within an atom, whose energy is one fourth of
the energy difference between the atomic p-level (εp)
and the s-level (εs); ∆ps ≡ εp − εs. Within the present
TB parameterizations, the electronic structures of the
diamond-structure solids can be scaled with the unique
parameter, αm ≡ ∆ps/∆ab, called ‘metallicity’ and a sys-
tem would be metallic, when αm → 1.5, 6) For classifica-
tion of group IV elements, some TB parameterizations
were picked out and we obtained αm = 0.44 for C,7)

αm = 0.758) for Si, and αm = 0.77, for Ge.7) In the
present numerical demonstrations, we use the nearest-
neighbor TB Hamiltonians H for Si whose parameters
are from ref. 9. Here ∆ps is fixed to be 6.45 eV. ∆ab and
all the other interatomic hoppings are functions of the
bond length d. In the equilibrium case (d = d0 ≡ 4.44
a.u.), ∆ab = 8.25 eV and αm = 0.78.

Equation (1) is closely related to the localized-
orbital order-N formulation,2) where an energy func-
tional EO(N) =

∑N
i,j(2δij −〈ψj |ψi〉)〈ψi|Ω|ψj〉 = Tr[(2ρ−

ρ2)Ω] is iteratively minimized. Here Ω ≡ H − η, and
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Due to the large energy shift of Dhigh(ε), the Hilbert
space of the other WS’s is automatically ‘excluded’ in
the variational freedom of the WS ψk.

To construct WS’s, we used an iterative order-N algo-
rithm with Hamiltonian HWS. The eriodic cell
tains 4096 atoms and N = 8192 doubly-occupied WS’s.
For each WS ψk, the localization center was chosen at
the center of the initial bonding orbital |bk〉 and each WS
was expanded into 614 sp3 orbitals with a spherical cut-
off from the localization center. The resultant energy per

ρ ≡
∑N
k=1 |ψk〉〈ψk|. ρ is the one-body density matrix

and the energy parameter η must be chosen to be suffi-
ciently high (η > εN ). The WS wavefunctions satisfy

0 =
δEO(N)

δ〈ψk|
= (2Ω− ρΩ− Ωρ)|ψk〉

= 2 (H −Hocc) |ψk〉 − 2η(1− ρ)|ψk〉. (3)

Hocc is the Hamiltonian within the valence or occupied
Hilbert space

ρH = Hρ = Hocc ≡
N∑
j=1

|ψ(eig)
j 〉ε(eig)

j 〈ψ(eig)
j |. (4)

On the other hands, eq. (1) and the orthogonality
constraint are rewritten as (H −Hocc) |ψk〉 = 0 and
(1− ρ) |ψk〉 = 0, which satisfy eq. (3). In the present
numerical calculations, the value η = 5 a.u. is chosen.

From eq. (3), we derive an eigen-value equation;

H
(k)
WS|ψk〉 = εkk|ψk〉, (5)

where

H
(k)
WS ≡ H − ρ̄kΩ− Ωρ̄k (6)

ρ̄k ≡ ρ−| ψk〉〈ψk| =
N∑

j( 6=k)

|ψj〉〈ψj |. (7)

This eigen-value problem corresponds to the variational
procedure of a specified WS (ψk), while all the other
WS’s ({ψj}j 6=k) are fixed. If ρ̄k|ψk〉 = 0 is satisfied,
eq. (5) is reduced to eq. (1). A WS is not an eigen state

of H, but an eigen state of H
(k)
WS. We call the specified

state (ψk) a ‘central’ WS.
Figure 1 shows the density of states (DOS) of H and

H
(k)
WS in the Si case (d = d0). We observe the follow-

ing properties; (a) The ‘central’ WS |ψk〉 is the non-

degenerate ground state of H
(k)
WS with the eigen value of

εkk=εWS. (b) The eigen states in the conduction band

of H, (ψ
(eig)
i , N+1≤i≤2N), are also the eigen states of

H
(k)
WS with the same eigen energies

H
(k)
WS|ψ

(eig)
i 〉 = H|ψ(eig)

i 〉 = ε
(eig)
i |ψ(eig)

i 〉. (8)

(c) All the other (N−1) occupied WS’s ofH are not eigen

states of H
(k)
WS. They form a high-energy band, located

at ε ≥ 2η−εN ≈ 272 eV. The onding DOS profile
is Dhigh(ε) ≈ Dval(2η − ε), where Dval(ε) is the DOS
profile of the valence band of H. This property arises
from the relation

〈ψi|H
(k)
WS|ψj〉 = 2η −〈 ψi|Hocc|ψj〉, i, j 6= k. (9)

corresp

the p con-

WS εWS) has a deviation of about eV (0.1%) from
the correct value, where the correct value is obtained by a
standard diagonalization method with the primitive cell
and many k-points. The actual procedures are as follows;
(i) With proper initial states of WS’s, the density matrix

ρ and the Hamiltonians {H(k)
WS} are constructed. (ii) For

each WS |ψk〉, the one-body energy 〈ψk|H
(k)
WS|ψk〉 is min-

imized under the localization constraint on |ψk〉 with

fixed Hamiltonian H
(k)
WS. (iii) The updated WS’s {ψk}k

are orthogonalized using the Löwdin symmetric orthog-
onalization.10) Then the procedure goes back to (i), un-
till converges. Since the present TB Hamiltonians are
upper-bounded, WS’s can be also defined for the unoc-
cupied or conduction band. The resultant WS’s satisfy
eq. (1), where the N one-electron states should be those
in the unoccupied band. Such conduction WS’s can be
formulated within the energy maximization procedure of
EO(N), where the initial WS’s are chosen to be the anti-
bonding orbitals {|ak〉}k=1,N and the energy parameter
η is chosen to be enough low.

Figure 2 shows the norm distributions |Ckφ|2 of some
WS’s, where {φ} ≡ {bk, ak}. Figure 2 contains all the
614 orbitals of the resultant WS’s. Case (a) is the WS
with d = 0.8d0, whose metallicity αm = 0.47 may corre-
spond to the carbon case. Case (b) is the equilibrium Si
case (d = d0). For both cases, the norm distributions on
bonding orbitals are very small except the central one,
because they are occupied mainly by the other WS’s.
The conduction WS’s in the Si case is also plotted in
Fig. 2(c), which shows a decay property similar to that
in the valence WS (b), but the roles of bonding and anti-
bonding are hanged. The of the central

( 0.006

the

orbitals normexc

Fig. 1. The DOS of Hamiltonians H and H
(k)
WS for the Si case

with 512 atoms in the periodic cell. The isolated level εWS is
broadened by a Gaussian with a width 0.01 eV and all the other
levels are by that with a width of 0.1 eV. The two parallel arrows

in H indicate ε
(eig)
N

and ε
(eig)
N+1.
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Another definition of the spatial spread of the WS can
be derived from the Hamiltonian H

(k)
WS. The Hamilto-

nian H
(k)
WS has one localized eigen state ψk and the con-

duction band, and so H
(k)
WS maps the WS formally to

an impurity state, where the corresponding ionization
energy is defined as ∆WS ≡ ε

(eig)
N+1 − εWS. A simplest

case is the Hamiltonian in eq. (2), where the WS’s are
reduced to bonding orbitals and the corresponding gap
∆WS is to ∆ab. Using the uncertainty relation, a spatial
spread is defined as ξb ≡ h̄/

√
2me∆ab, where me ≡ 1

a.u. Using the value in the Si case (∆ab = 8.25 eV),
we obtain ξb=0.29d0, which is consistent with the fact
that the spread of a bonding orbital should be less than
or about equal to the bond length d0. Such parameters
can also be defined for WS’s as ξWS ≡ h̄/

√
2me∆WS =

ξb
√

∆ab/∆WS.11) For the WS in the Si case, we obtained
∆WS = 6.49 eV and ξWS/ξb = 1.13, which agrees, in
the order, to the other definition of the spatial spread
r̄WS/r̄b = 1.16 or 1.19. This agreement shows that the
mapping theory to a virtual impurity state is consistent
with the resultant WS’s. The resultant values of the spa-
tial spread lead us to the conclusion that the WS in the
Si case is so localized that its spatial spread is in the
same order as that of a bonding orbital.

To observe a limiting case with vanishing the bandgap,
we also calculated an artificial case with ∆ps = 0, where
the system is a direct-gap insulator and the bandgap ∆ =
8Exx is located at Γ point.12) We modified the parame-
ter Exx from the value in the Si case (Exx = 0.20 eV) to
an almost vanishing one (Exx = 0.0005 eV). This modi-
fication was done by the tuning of Vppσ and Vppπ, so as
to keep Exy unchanged.12) This modification changes the
value of ∆ab as well. The resultant WS still shows a local-
ized property with the spatial spread of r̄WS/r̄b = 1.15
or 1.20, where the latter value is from the calculation
with 512 atoms without localization constraint. From
the gap parameters (∆ab = 7.95 eV, ∆WS = 4.23 eV), we
obtained ξWS/ξb = 1.37. These resultant values of the
spatial spread lead us to the same conclusions as those
in the above Si case.

The first-order perturbation of eq. (5) can be con-
structed using H0 in eq. (2) as the non-perturbative
Hamiltonian;

|ψk〉 = C(0)|bk〉+
∑
j( 6=k)

C(ν(j))|aj〉, (10)

where C(0) ≈ 1. The suffix ν specifies the bond step and
the inequivalent bond sites from the central bond |bk〉.
In the perturbation terms, bonding orbitals {|bj〉}j 6=k
are ‘excluded’, because these are the other WS in the
non-perturbative terms and are in the high-energy band
in Fig. 1. Because the Hamiltonian H is a short-range
operator, the perturbation series in eq. (10) contain only
the 6 first-nearest-neighbor (FNN) antibonding orbitals
(|a(1)〉) and the 18 second-nearest-neighbor (SNN) anti-
bonding orbitals (|a(2)〉). For the FNN antibonding or-
bitals, the perturbative coefficients are given5) by

C(1)

C(0)
≈
〈a(1)|H|bk〉

−∆ab
=

∆ps

8∆ab
=
αm

8
. (11)

Fig. 2. Norm distributions of WS’s |Ckφ|
2, as a function of the

bondstep from the central bond. The closed circles and the open
squares denote the norms on bonding and anti-bonding orbitals,
respectively. (a) The valence WS in the case with d = .8d0, (b)
the valence WS in the Si case (d = d0), (c) the conduction WS in
the Si case. The crosses denote the values from the perturbation
theory. In (a), the two values |C(2‖)|2 and |C(2⊥)|2 from the

perturbation theory are almost identical.

0

is localized at the atom that the orbital belongs to. For
a bonding orbital, this parameter is r̄b ≡ d/2 from its
definition. For the WS in the Si case (d = d0), we ob-
tained r̄WS = 1.16r̄b. To see the effect of the boundary
condition, we also calculated the system with 512 atoms
without localization constraint and found r̄WS = 1.19r̄b.
Since the operator (r̂−rk)2 is not short-ranged, the value
of r̄WS might be sensitive to the boundary conditions.

bond is about 96% in (a) or 94% in (b) and (c). The
summation of the norms upto the bondstep of n = 2 is
about 99.8 or 99.7% in all the cases.

The most important issue for the practical order-
N calculations is to reproduce physical quantities un-
der localization constraints on WS’s. With the exact
WS’s {ψk}, the physical quantity of a one-body opera-

tor X̂ can be described as 〈X̂〉 ≡
∑N
k 〈ψ

(eig)
k |X̂|ψ(eig)

k 〉 =∑N
k 〈ψk|X̂|ψk〉. In a practical order-N calculation with

a localization constraint, the strict orthogonality con-
straint is modified to an approximate one (〈ψj |ψi〉 ≈ δij)
and the expression of a physical quantity is replaced by
〈X̂〉=

∑N
i,j(2δij−〈ψj |ψi〉)〈ψi|X̂|ψj〉, which is mainly con-

tributed by the diagonal elements 〈ψk|X̂|ψk〉. If an oper-
ator X̂ is short-ranged, like the present TB Hamiltonian,
its matrix element 〈ψk|X̂|ψk〉 should be determined dom-
inantly by a ‘central’ region of the WS, and only slightly
by the ‘tail’ or the asymptotic long-distance behavior.
From this point of view, we analyze the present WS’s
through the matrix elements 〈ψk|X̂|ψk〉 of some opera-
tors, not the asymptotic behavior.
Note that the asymptotic long-distance behavior of WS
is discussed in refs. 1.

If we apply the above discussion to the operator
(r̂ − rk)2, where rk is the center of the central bond
(|bk〉), an effective spatial spread of WS can be defined
as r̄WS ≡ (〈ψk|(r̂ − rk)2|ψk〉)1/2. The values were actu-
ally calculated with the assumption that each sp3 orbital

through long-distance
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variational theory of electronic-structures. In this letter,
we have shown how WS similar to and different from
a bonding orbital within the diamond-structure solids,
where the Hamiltonian HWS plays a crucial role both
the construction and the analysis of WS’s. These theo-
ries are derived from the variational order-N formulation
and thus are applicable to other WS’s in covalent-bonded
systems and/or ab initio Hamiltonians. Results of these
theories give microscopic pictures for practical order-N
calculations of large-scale systems.

This work is supported by a Grant-in-Aid for COE Re-
search ‘Spin-Charge-Photon’ and by a Grant-in-Aid from
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Here, the factor 1/8 stems from the four atomic coordi-
nation of the diamond structure, which is a three dimen-
sional effect. On the other hand, the SNN anti-bonding
orbitals are classified into two geometrically inequivalent
bond sites; The 6 SNN bonds are parallel to the central
bond. The other 12 SNN bonds exist, in a rough sense,
within the plane perpendicular to the central bond. We
denote the corresponding coefficients C(2‖) and C(2⊥),
respectively, and propose the estimations of

C(2λ)

C(0)
≈
〈a(2λ)|H|bk〉

−∆ab
+
(αm

8

)2

, (12)

where (2λ) indicates (2 ‖) or (2 ⊥). The first term is the
first-order perturbation and its value is about +1/34 for
C(2‖) or −1/27 for C(2⊥). Since this term is reduced to
the ratio between two inter-atomic hoppings, its value is
almost unchanged within the diamond-structure solids.5)

The second term in eq. (12) is responsible for the suc-
cessive hopping of the FNN hoppings, where C(0) = 1
is assumed. This term varies with αm and is essential
to the distinction between the cases in Figs. 2(a) and
2(b). Note that, in the realistic cases (αm ≤ 1), the
second term (αm/8)2 ≤ 1/64 is smaller than the first
term, though not negligible. The above coefficients can
be determined by eqs. (11), (12) and the normalization
condition (|C(0)|2+6|C(1)|2+6|C(2‖)|2+12|C(2⊥)|2 = 1).
For the conduction WS’s, the same perturbation theory
can be constructed, where the roles of bonding and anti-
bonding orbitals are hanged. The resultant norm dis-
tributions |C(1)|2, |C(2‖)|2 and |C(2⊥)|2 are indicated by
crosses in Fig. 2. The energy of the WS εWS = 〈ψk|H|ψk〉
was also estimated from the perturbation results and the
deviation from the correct value was about 0.06 eV in the
Si case, which corresponds to 1% of the energy (εWS) and
to 10% of the energy difference from a bonding orbital
(εb−εWS). Here we can see that the present TB Hamilto-
nian is a short-range operator and the value of its matrix
element 〈ψk|H|ψk〉 can be well explained within a quite
local area.

In conclusion, the concept of composite-band WS’s
connects the picture of ‘chemical bond’ with the modern
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