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A brief introduction is given for the order-N electronic-structure theory with localized states.
Their locality is systematically investigated among the diamond-structure solids. The method is
applied to molecular-dynamics algorithms. Test calculations with million atoms are done using a
standard PC and parallel computers. The dynamical fractures of Si crystal are simulated using the
above order-N method. Their brittle property is analyzed from the quantum mechanical view of the
electronic structure.
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I. INTRODUCTION

Large-scale electronic-structure calculations are of
great importance in nano materials. Recently, the ‘order-
N’ methods have been proposed for calculating such
large-scale systems. The computational cost in the order-
N method is O(N), or linearly proportional to the sys-
tem size N [1]. The present theory is one of such order-N
theories, based on the localized one-electron states [2,3].
The present article describes the order-N theory with lo-
calized states and some molecular-dynamics applications
of Si brittle fracture.

II. LOCALIZED STATES FROM THE FIRST
PRINCIPLES

The density-functional theory and the Hartree-Fock
theory are modern quantum theories for electronic struc-
tures. These theories define one-electron states {φ(eig)

k }k

and effective one-body Hamiltonians Heff that include
the electron-electron interaction. Such one-electron
states can be regarded as eigen states of the Hamilto-
nian

Heffφ
(eig)
k = ε

(eig)
k φ

(eig)
k . (1)

Usually an eigen-value problem requires a O(N3) compu-
tational cost. This fact severely limits the system size of
electronic-structure calculations to, typically, one hun-
dred of atoms. Even with simpler theories like tight-
binding approximations, it is impractical to calculate all
the eigen states for systems with thousands of atoms or
more.

The present concept of localized states can be gener-
ally defined within the first-principle electronic structure
theories. These states can be defined as localized one-
electron states that satisfy

Heffφi =
N∑

j=1

εijφj , (2)

where N is the number of occupied states. Equation (2)
is derived from a variational procedure within a single
Slater determinant, as is in the Hartree-Fock theory and
the density-functional theory. The parameters εij are the
Lagrange multipliers for the orthogonality constraints

〈φi|φj〉 = δij (3)

and satisfy εji = 〈φi|H |φj〉. Such states can be formally
equivalent to unitary transforms of the eigen states

|φj〉 ≡
N∑
k

Ujk|φ(eig)
k 〉, (4)

where Uij is a unitary matrix. These localized states
exactly reproduce any physical quantity 〈X̂〉 as

〈X̂〉 ≡
N∑
k

〈φ(eig)
k |X̂ |φ(eig)

k 〉 =
N∑
j

〈φj |X̂ |φj〉, (5)

because of Eq. (4). Especially, the sum of the one-
electron energies of the localized states gives the correct
band-structure energy

Ebs ≡
N∑

k=1

ε
(eig)
k =

N∑
j=1

εjj , (6)

though the Hamiltonian matrix εij is not diagonal. One
example of the localized states is the Wannier state in
the solid state physics. Their locality has studied in some
cases [5,6]. Wannier states Wνl(r) can be written in a
form of

Wνl(r) ≡
∫
eiklφ

(eig)

νk
(r)dk. (7)

Here the eigen states φ(eig)

νk
, or Bloch states, have the suf-

fices of ν for the band index and k for the wave vector in
the Brillouin zone. Wannier states have a suffix l for the
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lattice vector that indicates their localization centers. [4]
Eq. (7) can be regarded as one of the unitary transforms
(4), where the corresponding unitary matrix

Uνl,ν′k ≡ δν,ν′eikl (8)

is diagonal with respect to the band suffix. In other
words, the present concept of localized states is a gener-
alization of the Wannier state to composite-band systems
and/or non-periodic systems. Such localized states can
be called ‘generalized Wannier states’ [7–9].

For covalent-bonded systems, the simplest physical
picture of a localized state φj is the bonding orbital lo-
cated at the j-th bond site. Realistic applications to
condensed matters, such as silicon crystal, can be found
in Ref. [9] with the density functional theory, where the
localized states are constructed using explicit unitary
transforms (4). The resultant localized states are ex-
act, but are not constructed with an O(N) cost, because
this procedure requires the eigen states. The localized
states in the present order-N calculations correspond to
approximate wavefunctions of the above exact wavefunc-
tions, within the framework of the variational procedure.

Hereafter, for simplicity, we discuss the theories within
a tight-binding Hamiltonian H . Equation (2) is closely
related to the order-N formulation [2], where an energy
functional

EO(N) ≡
N∑
i,j

(2δij − 〈φj |φi〉)〈φi|Ω|φj〉 (9)

is minimized. The operator Ω is defined as Ω ≡ H − η
and the energy parameter η must be chosen to be suffi-
ciently high (η > ε

(eig)
N ). Without any localization con-

straint, the variational procedure leads us to Eq.(2) and
the orthogonality (〈φi|φj〉 = δij). The practical order-N
procedure is to minimize EO(N) iteratively with respect
to localized states {φj} under localization constraints.
The resultant equation can be written in an eigen-value
equation [3] as

H
(j)
loc |φj〉 = εjj |φj〉, (10)

where

H
(j)
loc ≡ H − ρ̄jΩ − Ωρ̄j

ρ̄j ≡
N∑

i( �=j)

|φi〉〈φi|. (11)

This equation corresponds to the variational problem of
one localized state (φj), where all the other localized
states are fixed. The localized states are not eigen states
of H , but are eigen states of Hloc. Equation (10) gives a
general theory of the locality of the localized states [3].

III. LOCALIZED STATES IN
DIAMOND-STRUCTURE SOLIDS

The structures of the localized states are directly re-
lated to the electronic structure. We systematically in-
vestigate those among the group IV elements: C,Si,Ge,α-
Sn. The ground states of these materials are the diamond
structure. For these materials, a universal theory can be
constructed within tight-binding Hamiltonians [10]. A
minimal sp tight-binding Hamiltonian is constructed on
the atomic s-,px-,py- and pz- orbitals, which are equiv-
alent to four sp3 orbitals. Bonding and antibonding or-
bitals can be defined from a pair of sp3 orbitals on each
bond site and are denoted by {bj, aj}j, respectively. Here
j indicates the bond site. The corresponding energy lev-
els are denoted as εb ≡ 〈bj |H |bj〉 and εa ≡ 〈aj|H |aj〉,
respectively. Since all the bond sites are symmetrically
equivalent in the diamond structure, the above energy
levels are the unique values (εb, εa) among all the bond
sites. We also denote the difference between them as
∆ab ≡ εa − εb. The energy ∆ab describes the order
of the energy gain in a bond formation. A sp tight-
binding Hamiltonian of single-element materials contains
the following five energy parameters; One is the differ-
ence ∆ps between the atomic p-level εp and the s-level εs
(∆ps≡εp−εs). The other four parameters are the nearest-
neighbor hopping integrals in the Slator-Koster forms,
which gives ∆ab. In general, these four inter-atomic hop-
pings are independent, but, the ratio among them is al-
most the same for the group IV elements [10]. Therefore,
the system has essentially only two energy scales; the
intra-atomic energy-difference ∆ps, and the inter-atomic
hoppings, mainly characterized by ∆ab. To classify real
solids, the ratio αm ≡ ∆ps/∆ab is calculated from some
sets of the tight-binding parameters. The resultant val-
ues are αm = 0.44 for C [11], αm = 0.78 for Si [12,13],
and αm = 0.75 for Ge [11]. The parameter αm may be
called ‘metallicity’, because the bandgap would goes to
be zero at αm→1 [10].

We construct localized states, using an iterative order-
N algorithm with the Hamiltonian Hloc with a periodic
cell with 4096 atoms [3]. We also construct the exact
localized states from the eigen states with a smaller sys-
tem size (512 atoms) [14]. The simplest approximation
of the localized states can be given by the sp3 bonding
orbital on each bondsite (|φj〉 ≈ |bj〉). In the present
order-N algorithm, such sp3 bonding orbitals are chosen
to be the initial states of the iterative algorithm. To in-
vestigate common features of the above solids, we use
the nearest-neighbor tight-binding Hamiltonians H for
Si, whose parameters are from Ref. [13]. Here the inter-
atomic hopping parameters are functions of the nearest
neighbor atomic distance d and the intra-atomic hopping
parameter ∆ps is fixed to be 6.75eV. We tune the value
of d for the variety of αm.
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Here we show some of our results with the order-N cal-
culations. Figure 1 shows the norm distributions |Cjχ|2
of some resultant localized states, where {χ} ≡ {bj, aj}
indicates the basis orbital. The case (a) is the case
with a low metallicity (αm = 0.47), which might cor-
responds to the Carbon case. The case (b) is the Si case
(αm = 0.78). For both cases, the localized states are con-
tributed mainly by the central bonding orbital and the
neighboring antiboding orbitals

|φj〉 ≈ C(0)|bj〉 +
∑
i( �=j)

C(ν(i))|ai〉. (12)

Here the suffix ν specifies the bond step and the in-
equivalent bond sites. The neighboring bonding orbitals
{|bi〉}i�=j have quite small contributions, because these
are occupied by the other localized states {|φi〉}i�=j . The
norm of the central bond |C(0)|2 is about 96 % in (a)
or 94 % in (b). The summation of the norms up to the
second bondstep is about 99.8 or 99.7 % in both cases.

Bond steps Bond steps Bond steps

N
or

m
 d

is
tr

ib
ut

io
ns

(a) (b) (c)

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
10-8

10-6

10-4

10-2

100

|b>
|a>
|a>(p)

FIG. 1. Norm distributions of localized states |C(ν)|2, as
a function of the bondstep from the central bond. [3] The
case (a) and (b) correspond to Carbon and Si systems, re-
spectively. The case (c) is the conduction localized states in
the Si case. The closed circles and the open squares denote
the norms on bonding and anti-bonding orbitals, respectively.
The crosses denote the values from the perturbation theory.

The contribution of the neighboring antibonding or-
bitals can be estimated by the first-order perturbation
of Eq.(10) [3,14]. The resultant perturbative coefficients
are given by

C(ν)

C(0)
=

〈a(ν)|H |bk〉
εb − εa

. (13)

The range of non-zero perturbative coefficients C(ν) is
determined by the interaction range of Hamiltonians.
In nearest neighbor tight-binding Hamiltonians H , the
interactions are limited to nearest neighbor atoms. In
terms of bond sites, this turns out to be second nearest
neighbor interactions, which is essential for the diamond

structure. In the diamond structure, each bond site has
six first-nearest-neighbor bond sites and eighteen second-
nearest-neighbor bond sites. The first-nearest neighbor
bond sites are geometrically equivalent and the corre-
sponding perturbative coefficients are denoted as C(1).
The second-nearest-neighbor bond sites are classified into
two geometrically inequivalent bond sites. The corre-
sponding coefficients are denoted as C(2‖) and C(2⊥), re-
spectively [15]. The resultant perturbative coefficients
are also shown in Fig. 1 and reproduce the more accu-
rate values quite well. The energy of the localized states
〈ψj |H |ψj〉 is also estimated from the perturbation the-
ory [15]. The estimated value has only a small deviation,
0.06 eV or 1 %, from the correct value. This energy cor-
responds to the average of the occupied eigen levels, or
the weighted center of the valence band. Here we can see
that the present tight-binding Hamiltonian is a short-
range operator and its matrix element 〈ψj |H |ψj〉 can be
well explained within a quite local area.

The concept of the localized states can defined also for
the conduction bands within the sp Hamiltonian [3,14].
Such a conduction localized state in the Si case is also
plotted in Fig.1(c). The resultant state shows the sim-
ilar decay property as in the valence state (b), but the
role of bonding and antibonding orbitals exchange with
each other.

IV. MOLECULAR DYNAMICS SIMULATION
FOR THE FRACTURE OF SI CRYSTALS

We have developed an order-N molecular-dynamics al-
gorithm based on the above variational and/or perturba-
tive theories. The test calculations were done in systems
of up to about 1.4 million atoms, using a standard PC
with single Pentium 4 processor and 2GB RAMs. Par-
allel computations are also tested [16]. Here, we show
several results of the dynamical fracture simulations of
silicon with external loads as shown in Fig. 2 [17]. We
use a sp tight-binding Hamiltonian [13]. The systems
are isolated clusters with orientation-fixed sp3 states at
their boundaries. In smaller systems, satisfactory agree-
ments are obtained for the values of elastic constants
and the crack-propagating velocity among the order-N
calculations, the exact diagonalization, and experimen-
tal observations. For example, the order-N calculation
gives the Young modulus E100 = 105 GPa that is com-
parable with the experimental value E100 = 130 GPa
and the crack-propagating velocity 2 km/s in compari-
son with the observed value ≤ 3.8 km/s. The fracture
occurs when the band-gap goes to be zero. This is mi-
croscopically interpreted as bond-breaking processes or
as vanishing the gap between bonding and antibonding
states in some local region. The occupation ratio of s-
orbital for each localized state f

(j)
s ≡ |〈s|φj〉|2 can be

a good physical quantity for investigating the fracture
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process. This quantity describes the extent of the sp
hybridization and, for instance, is 1/4 for the ideal sp3

state and 1/2 for the ideal s2p2 state. Drastic change
can be seen also in the projected density of states of the
localized states in the bond-breaking processes. After
bond-breaking processes, the localized states on the bro-
ken bonds are stabilized with a high value of f (j)

s . This
means that such states are similar to an atomic s-state,
rather than a sp3 dangling-bond state. These ‘s-rich’
states seem to be transitional and tend to re-bond some-
where later in the simulation.

We can present the quantum mechanical view of the
brittle fracture of Si crystals. The energies of atomic
s and p states are εs = −5.45eV and εp = 1.2eV,
respectively, in the ideal tetrahedrally-bonded environ-
ment. Since an isolated silicon atom has the s2p2 con-
figuration, the averaged occupation ratio of s-orbital
is the half (fs = 1/2) and the electronic energy is
εatom ≡ (εs + εp)/2 = −2.13eV per electron. In per-
fect crystals, all the states are localized, constructed
from the sp3 bonds and the corresponding energy level is
εbulk = −5.2eV. Therefore the stabilization energy (the
cohesive energy) of the bulk electron system per electron
is about 3 eV. In crack tips, the sp3-bonded network is
locally broken and the existence of the low s level stabi-
lizes the transitional s-rich states. Therefore the bonds
near the crack tips tend to be broken much easier than
those at the bulk regions. This can be interpreted as the
microscopic origin of the brittle fracture.

V. SUMMARY

The localized states can be defined from the first prin-
ciples and give a foundation of an order-N method for
large-scale atomistic simulations. The localized states
for the diamond-structure solids are systematically in-
vestigated with a universal tight-binding theory. The
order-N method has been applied to the dynamical pro-
cess of the brittle fracture in Si crystals. The quantum
mechanical view of brittle fracture is presented.
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FIG. 2. Example of the present dynamical fracture simulation, where the atoms on the left and right edges are under an
external load so as to keep the (001)-component of the velocity to be constant v0/2.
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