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Towards large-scale ab initio electronic-structure calculations, we propose a new
formalism, where basis orbitals are localized, nonorthogonal, and given on a real-
space regular grid. A window function is adopted to optimize localized basis or-
bitals on a real-space grid. As an example, the ground state of diamond crystal is
calculated using the ultrasoft pseudopotential. We discuss a numerical instability
and a method of accelerating the convergence.

1 Introduction

Complex liquids could be de�ned as a general name of non-solidi�ed condensed
matters with hierarchal static and dynamical property under controlled cir-
cumstances. In complex liquids, the complexity stems from the cooperative or
competitive property in atomic interaction, such as covalent interaction, ionic
interaction, metallic interaction and hydrogen-bonded interaction. Ab initio

electronic-structure calculations leads us to a uni�ed picture of these proper-
ties. Therefore fundamental methodological improvements in the electronic-
structure calculation are important to understand complex liquids.

After the success of Car and Parrinello in 1985 1, ab initio molecular dy-
namics are applied to various systems; solid, liquid, amorphous, surface, and
so on. The essentials of these success are (a) the self-consistent treatment of
electron correlation within the local density approximation (LDA),2 (b) the ab
initio pseudopotential theories, (c) the plane-wave bases and the implementa-
tion of the Fast Fourier Transform (FFT), and (d) the progress of computer
technologies such as vector processors, parallel processors or fast and cheap
workstation. In the 90's, however, some limitations of the current framework
are pointed out and one of them is the restriction on the system size. A typical
system size is some hundreds of atoms in a periodic cell for silicon, or approx-
imately one hundred atoms for other elements, which may allow restricted
study of complex liquids. A di�culty for application to large systems is the
system-size scaling. The present frame work is based on the plane-wave ex-
pansion of wavefunction, 1 and requires an O(N2 logN ) cost in CPU time in
FFT procedures of the wavefunctions and an O(N3) cost in orthogonalization
procedures of the wavefunctions. Here we denote N as the system size, the
number of atoms or electrons in a periodic cell.

`Order-N' methods, or `linear system-size-scaling' methods are so designed
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that the total CPU time is O(N ), or linearly proportional to the system size.
Nowadays `Order-N' methods are possible within tight-binding Hamiltonian,
but not yet in fully-selfconsistent case of the LDA calculation. Fortunately, the
LDA Hamiltonian is a shortrange treatment of the electron-correlation, and so
we could construct an `order-N' scheme in principle, whereas the Hartree-Fock
Hamiltonian requires O(N !) CPU time to calculate the exchange potential.

For an `order-N' scheme in LDA calculation, two issues are essential; one
is a formulation without explicit orthogonalization or matrix-inversion proce-
dures, because these procedures have an O(N3) CPU time. Mauri et al. 3

overcame this di�culty by introducing a new energy functional in the varia-
tional procedure called `unconstrained minimization' (UM). The other issue is
to construct a localized basis set. The current plane-wave method consumes
an O(N 2 log2N ) CPU time for the FFT procedures of plane-wave basis. 1 To
avoid this computational cost, we could use local basis functions and such local
basis functions, applicable to fully-selfconsistent calculations, may be given on
a real-space grid. A DFT calculation with real-space regular grids is given by
Chelikowsky and coworkers 4;5 and is called `�nite-di�erence (FD) real-space
scheme'. In the FD real-space scheme, the kinetic-energy operator, or the
Laplacian operator, must be a �nite di�erence on real-space grids. In our
previous works, 6;7 we constructed a foundation of the FD real-space scheme.
However, this scheme is based on a global grid mesh in real space and could
not be directly applied to the local-basis formulation.

This article is devoted to the methodology of our new formalism, towards
the `order-N' methods. In Section 2, we talk about the foundations of the FD
real-space scheme, especially the exact kinetic-energy operator. 6 In Section
3, we summarize the original work of the UM minimization and demonstrate
its example. In section 4, we give a generalization of the UM minimization to
non-orthogonal localized bases. 11 In section 5, we propose a `window function'
technique so as to generate the localized basis function on a real-space grid,
even within the non-local potential case. 11 In section 6, test calculations with
the ultrasoft pseudopotential 8;9;10 are done on the ground state of diamond.
11 In section 7, we discuss the numerical instability of this scheme and a way
to accelerate the convergence to the ground state.

In section 8, we summarize our work and comment further studies.

2 Foundation of �nite-di�erence real-space scheme : kinetic-energy
operator and preconditioning operator

In this section, the foundations of the FD real-space scheme are given, using the
equivalence between basis sets in real and reciprocal space6. These foundations
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are not directly related to the `order-N' method, but are important to obtain
results equivalent to the plane-wave based formalism. In our previous work 6,
we introduce an exact kinetic-energy operator and a preconditioning operator
as real-space �nite di�erences. Here we omit, however, the latter topic and
focus on the kinetic-energy operator.

In �nite-di�erence real-space schemes, the kinetic-energy operator, is usu-
ally written as �nite di�erences in real space. These FD formulas contain
appreciable errors in case of �nite mesh interval in real space. For instances,
the 3-point FD and 5-point FD are, respectively,

�00(x) �
1

h2
�
� 2�(x) + f�(x+h) + �(x�h)g

�
+O(h2) (1)

�00(x) �
1

h2
�
� 30�(x) + 16 f�(x+h) + �(x�h)g

�f�(x+2h) + �(x�2h)g
�
+O(h4): (2)

Here, h corresponds to the mesh interval, and we discuss the 1-dimensional
case for simplicity. Applications to 3-dimensional cases are straightforward.

We could derive an exact FD formula , though long-ranged , under the
assumption that wavefunctions have a cuto� wavenumber in reciprocal space,
just as in the current plane-wave scheme;
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Here, L is the size of the periodic cell, and 2J � L=h is the number of mesh
points in one direction.

Using the discrete Fourier Transform cg = (h=L)
P

n ane
�ignh, where the

summation over n means real-space integration, the wavefunction could be
written exactly in real-space mesh grid.
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could be called a `delta function on mesh', because of the property ~�(x=nh) =
�n;0. An example is shown in the Fig. 1(a). The orthogonality of the bases

f~�(x�nh)gn could be shown as follows;

Z L

0

dx

h
~��(x�nh)~�(x�n0h) =

�
h

L

�2X
g;g0

Z L

0

dx

h
e�ig(x�nh)e+ig

0(x�n0h)

=

�
h

L

�2X
g;g0

ei(gn�g
0n0)h

Z L

0

dx

h
e�i(g�g
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h

L
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ei(gn�g
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h

L

X
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eig(n�n
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Figure 1: (a) The `delta function' on mesh point ~�(x), where L=h = 16. (b) The forms of
the `low-pass' �lters, which correspond to the 3-point and 5-point FD, respectively.

Under the assumption (3) or (4), the matrix element of the kinetic-energy,
is exactly written in a form on real-space mesh as

< �1jT̂j�2 >=
X
n;n0

a�1na2nhT(n�n
0); (7)

where the transfer matrix T (n� n0) is

T (n� n0) � �
1

2

Z L

0

dx

h
~��(x�nh)~�00(x�n0h)
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= �
1

2
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The explicit form of ~�00(x) and numerical tests of the accuracy of this exact

kinetic-energy operator are given in our previous work 6.
We note that the low-order FD formula, such as the 3-point FD (1) and

5-point FD (2), could be interpreted as a `low pass-�lter ' in Fourier transform.
For instances, the 3-point FD (1) and 5-point FD 2 correspond, respectively,
to

�(x) =
X

jgj<�=h

�(gh)eigxcg (9)

�(�) �
2(1� cos�)

�2
(10)

and,

�(�) �
15 � 16 cos�+ cos 2�

6�2
(11)

The forms of the `low-pass' �lters are shown in Fig. 1(b).
These `low-pass' �lters are essentially equal to the Lanczos convergence

technique in the numerical analysis, 12 which is introduced to suppresses the
Gibbs phenomenon oscillations in the Fourier series.

3 Unconstrained Minimization 1 : Original work

In this section, we briey summarize the original UM technique 3 before our
generalization in the next section. In the DFT theory 2 with orthogonal basis
orbitals f g, the total electronic energy Etot is

Etot � 2
NX
k

D
 k

���T̂ + V̂ ion
NL

��� k
E
+ ELHXC[n]; (12)

ELHXC[n] �

Z
drV ion

loc (r)n(r) +
1

2

Z Z
drdr0

n(r)n(r0)

jr � r0j
+ EXC[n]: (13)

Here, 2N is the total (valence) electron number per periodic cell and the charge
density n(r) is de�ned as

n(r) � 2
NX
k

 �
k(r) k(r); (14)
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and the integration
R
n(r)dr = 2Tr[S] = 2

PN
k Skk is always equal to the

correct value 2N . The orthogonalization constraint Sij �< ij j>= �ij should
be satis�ed in the variational procedure, so this formalism requires an explicit
orthogonalization procedure, such as the Lagrange-multiplier technique or the
Gram-Schmidt technique, which consumes an O(N 3) CPU time. Hereafter we
call this formalism the `constrained minimization'.

The UM technique 3 was proposed so as to release the orthogonalization
constraint and omit explicit orthogonalization steps in the variational proce-
dure. This fundamental idea is based on a new variational procedure without
any explicit orthogonalization procedure, and introduces a new energy func-
tional EUM

tot

EUM
tot � 2

NX
ij

Aij

D
 i

���T̂ + V̂ ion
NL

��� j
E
+ELHXC[n] + EUM; (15)

EUM � 2��N; (16)

�N � N �
NX
ij

AijSij =
NX
ij

jSij � �ij j
2
: (17)

Here, the matrix Aij is de�ned as Aij � 2�ij �Sji or At = 2I �S and I is the
unit matrix. The charge density is rede�ned as

n(r) � 2
NX
ij

Aij 
�
i (r) j(r); (18)

and their integration
R
n(r)dr is not necessarily equal to the correct value 2N .

The parameter � must be appropriately chosen, and Mauri et al. 3 showed
that the energy functional Etot

UM has the DFT ground state energy EGS as its
absolute minimum (Etot

UM � EGS), when the parameter � is chosen to be larger
than the highest occupied level (� > �N ).

Here, we make some comments on the UM formalism. (i) Once the
matrix A is set to be At = S�1, the formalism is equivalent to the `con-
strained minimization' formalism, and requires an O(N3) CPU time in matrix-
inversion procedures, instead of explicit orthogonalization procedures. (ii)
The de�nition At � 2I � S corresponds to the lowest expansion of the se-
ries S�1 = fI � (I � S)g�1 = I + (I � S) + (I � S)2 + (I � S)3 + :::. (iii)
The minimization of the term EUM � 2��N in the energy functional (15)
requires an iterative orthogonalization procedure (Sij ! �ij). When orthog-
onalization is achieved (Sij = �ij thus Aij � 2�ij � Sji = �ij), the minimiza-
tion of EUM is, again, identical to the `constrained minimization' formalism
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and requires neither explicit orthogonalization procedures nor matrix-inversion
procedures. (iv) The quantity 2�N � 2N � 2

PN
ij AijSij = 2N �

R
n(r)dr

is the deviation of the charge from the correct value, and so one may call the
energy functional (15) a `ground-canonical like' potential and the parameter �
a `chemical-potential like' parameter.

Figure 2 shows the variational procedure to the ground state of oxygen
molecule, where we could �nd that the deviation of the total charge 2�N is
not zero under the course of the variational procedure.
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Figure 2: The total energy and the total electron number as a function of the number of
iterations for the UM energy minimization. The calculation is done on oxygen molecule using
the FD real-space scheme and the unconstrained minimization without localized bases. The
correct total electron number in this system is 12.

4 Unconstrained Minimization 2 : Generalization

The original UM procedure 3 can be generalized to the framework of the lo-
calized basis orbitals. We expand the physical orbitals f g, or the valence
wavefunctions, into localized basis orbitals f�g, just as in the linear combina-
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tion of atomic orbitals (LCAO) approximation,

 i(r) =
MX
i0

cii0�i0 (r): (19)

Here f�g are basis orbitals localized in real space and assumed to be centered
on atomic sites. The total number of the localized basis orbitals f�g,M , is not
necessarily equal to the number of occupied one-electron states N . We chose
M = 2N in our test calculation, which is discussed later. When we substitute
Eq. (19) into Eq. (15), (17) and (18), we obtain, respectively,

Etot
UM � 2

MX
ij

Bij

D
�i

���T̂ + V̂ ion
NL

����j
E
+ELHXC[n] +EUM; (20)

EUM � 2��N; (21)

�N � N �
MX
ij

BijSij ; (22)

and

n(r) � 2
MX
ij

Bij�
�
i (r)�j(r): (23)

Here, matrixBij is de�ned asBij �
PN

i0;j0 c
�
i0icj0jAi0j0 and

R
n(r)dr = 2Tr [BtS] =

2
PM

ij BijSij . This energy functional is similar to that by Hern�andez et al., 13

based on the density matrix approach with a model local potential. The only
di�erence in the energy functional is the form of Bij or a choice of variational
parameters in the actual procedure. One should refer to a comment on this
point in section IIC of their paper 13.

Note that in our actual test calculation with the ultrasoft pseudopotential,
8;9;10 the de�nitions (14), (18) and (23) are also replaced, respectively, by

n(r) � 2
PN

k

D
 k

���Ŝ(r)
��� k

E
, n(r) � 2

PN
ij Aij

D
 i

���Ŝ(r)
��� j

E
and n(r) �

2
PM

ij Bij

D
�i

���Ŝ(r)
����j

E
, respectively. Here the operator Ŝ is de�ned 8 as

D
�i

���Ŝ(r)����j
E
� ��i (r)�j(r) +

X
Inm

QI
nm(r)



�i
���In� 
�Im���j� ; (24)

where I indicates an atom, and su�xes n and m indicate reference states in
an atom. The charge density n(r) is written, for instance, as
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n(r) � 2
NX
k

D
 k

���Ŝ(r)��� k
E

� 2
NX
k

j k(r)j
2 +

X
Inm

QI
nm(r)

NX
ki



 k
���In� 
�Im�� k� : (25)

The overlap matrix Sij is rede�ned as

Sij �

Z
dr <�ij ^S(r)j�j>�<�ij�j> +

X
Inm

qInm


�i
���In� 
�Im���j� ; (26)

where qInm =
R
drQI

nm(r). See the original work
8 for more details.

5 Window-function technique

In this section, we explain how to generate localized basis orbitals within the
FD real-space scheme. To construct localized orbitals on a real-space regular
grid, we adopt a window-function technique, which allows us to optimize the
forms of localized basis orbitals instead of �xing them. A localized orbital �i
could be generated from an extended orbital ��i by

�i(r) � wi(r)��i(r): (27)

Here, we introduce a window function wi to localize basis orbitals within a
spherical region around an ion. The form of a window function must depend
only on the distance from the ion position R that the localized orbital belongs
to, i.e. , w(r) = w(jr �Rj), and is zero outside the local `cell', i.e. , w(jr �
Rj) = 0(jr �Rj > RL). The parameter RL is the radius of the local cell.

The implementation of a window function guarantees the locality of �i
in a spherical local-cell region (jr � Rj < RL) and satis�es the ( Dirichlet )
boundary condition, because the energy variation with respect to �� is reduced
to

�E

� ��i(r)
=
��i(r)

� ��i(r)

�E

��i(r)
= wi(r)

�E

��i(r)
: (28)

In our calculation, we use the ultrasoft pseudopotential, where (T̂ + V̂ ion
NL )j�i is

not localized in a local cell. Therefore this formalism of the window function
is essential to optimize the localized basis orbitals on a regular grid.

9



The resultant variational procedure should be achieved with respect to f��g
and fcii0g. The variations with respect to the orbitals f��g correspond to the
optimization of the local basis function on a real-space regular grid and those
with respect to the coe�cients fcii0g correspond to the determination of eigen
states. Though �� is, in principle, an extended function, its components in the
outer region (jr �Rj > RL) do not contribute to the total energy and so we
can neglect these components in actual computational procedures.

The window-function technique is also advantageous in force calculations,
which is important in a molecular-dynamics simulation. Because a localized
orbital � depends on the position of the ion R only through the window func-
tion w(jr�Rj), the derivatives of orbitals with respect to positions of ions are
reduced to

@�i(r)

@R
=
dwi(r)

dR
��i(r); (29)

which could make calculations of the Pulay force straightforward.

6 Test calculations on diamond

We tested the present formalism numerically on the ground state of diamond
crystal, using the ultrasoft pseudopotential8;9;10 and the local-density approx-
imation (LDA) with the Perdew-Zunger exchange-correlation potential,14 and
used the cubic supercell containing 8 atoms, where the edge length of a peri-
odic cell L is L = 6:727 atomic unit (a.u.). We use the double-grid technique in
the ultrasoft pseudopotential,8;9;10 where the spacings of the real-space grid h
are h = 0:42 a.u. for orbitals and 0:21 a.u. for the charge density. For the ref-
erence states in the ultrasoft pseudopotential, one reference energy is adopted
for each angular momentum l. 10 As in our previous works of the FD real-space
scheme, 6;7 FFT procedures are used to generate the potential from the charge
density n(r). These FFT procedures consumes negligible CPU time, whereas,
in the current plane-wave scheme, FFT procedures of all orbitals dominate
CPU time.
Four localized orbitals �i for each atom are prepared, and are optimized in the
variational procedure of Eq. (20). The number of valence orbitals f g for a
carbon atom is two, and so the choice of four localized basis orbitals f�g per
atom corresponds to M = 2N . Their initial forms of �i are chosen to be (s-,
px-, py-, pz-) atom-centered Gaussian forms, as those in Hern�andez et al. The
explicit forms of s- and pz- Gaussians, for instance, are ��s = exp(�r2=R2) and
��pz = z exp(�r2=R2), respectively. The width of Gaussian R is determined to
reproduce the peak of the radial component of the atomic pseudowavefunction,
and the optimal value is roughly estimated to R = 2:018 a.u. Results are not

10



sensitive of the detail in the choice of R, because the wavefunctions �� have
components only on the mesh points. A window function w(r) is chosen as
wi(r) � cos(�2

r
RL

) inside a local cell (r < RL), and wi(r) � 0 outside (r > RL).
The radius of the local cell RL is RL = 3:3635 a.u.

The resultant ground-state energy per atom E is E = 5:602a:u:=atom,
which agrees satisfactorily with the value of E = 5:617a:u:=atom in our pre-
vious work, 10;7 calculated using the FD real-space scheme without localized
orbitals. For comparison, we also calculated using `�xed' local basis orbitals,
where localized orbitals f�g are �xed to be the initial Gaussian forms and only
coe�cients fcii0g are optimized in the variational procedure. The resultant
ground state energy E = 5:204a:u:=atom is worse than the result calculated
with optimized f�g. Therefore, the optimization of f�g is crucial and we
should retain the possibility of the optimization of the localized orbitals f�g.

Figure 3 (a) shows the charge density of diamond in (110) plane. It can be
seen that characteristic two peaks of the charge density n(r) appear between
bonding carbon atoms. 10;15 Figure 3 (b) shows the charge density in the [001]
direction. Here we, again, comment that the charge density in the ultrasoft
pseudopotential are decomposed into the following two part; the `soft' charge of
the pseudo wavefunctions, the �rst term in (25), and the augmentation charge,
the second term in (25).
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Figure 3: (a) Charge density of diamond on (110) plane. Contours are plotted in every 0.04
a.u. (b) Charge density in [001] direction; the total charge density, the `soft' charge density
contributed only by pseudo-wavefunctions, and the augmentation charge. See detail in the
text.
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Figure 4 shows the resultant or optimized form of f�g on a real-space
mesh. It is clear that the initially s-Gaussian orbital keeps the s-symmetry in
the ground state, while the initially pz-Gaussian orbitals are mixed with px-
and py- Gaussian orbitals. In Fig. 4(a), the lack of the charge within r < 1:5
a.u. could be seen and corresponds to the lack of the augmention charge in
Fig. 3.
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Figure 4: Localized basis orbitals f�g in diamond crystal, optimized by the present vari-
ational procedure: (a) initially s-Gaussian (b) initially pz-Gaussian. The orbitals f�g are
normalized.
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7 Avoiding the numerical instability and accelerating the conver-
gence in UM

Finally, we comment on a numerical stability of our scheme. As already dis-
cussed in Section 3, the UM scheme breaks the charge neutrality 2�N �
2N�

R
n(r)dr 6= 0 in the course of the variational procedure, which may cause

a numerical instability in the Hatree (or Coulomb) energy.
We could avoid this numerical instability by the additional iterative or-

thogonalization, or the minimization of EUM � 2��N with respect to the
coe�cients cii0 , which consumes negligible CPU time. This iterative orthog-
onalization leads to the orthogonality in any accuracy using the convergence

criteria for EUM ( EUM < E
(c)
UM ). By setting E

(c)
UM = 0, we could achieve the

perfect orthogonalization, numerically, but, such `perfect ' orthogonalization
causes poor convergence to the ground state. So we found an optimal criteria

E
(c)
UM to be the smaller quantity of (1) 10 % of the energy deviation of the total

energy from the last iteration, jE(n)
tot �E

(n�1)
tot j and (2) 1 % of the present total

energy E(n)
tot .

Figure 5 demonstrates that the present `imperfect ' orthogonalization with

the optimal E(c)
UM accelerates the convergence, compared with the case with the

perfect orthogonalization E
(c)
UM = 0.

8 Summary and discussion

In summary, we construct foundations for a fully-selfconsistent `order-N' scheme,
within the FD real-space scheme. The essential foundations are (i) the vari-
ational principle with respect to nonorthogonal localized orbitals and (ii) the
construction of localized orbitals on real-space regular grids. The former issue
is resolved by application of the UM technique to the nonorthogonal basis set
and the latter issue is resolved by introducing a window function to localize
basis orbitals. The formulation is tested numerically on the ground state of dia-
mond crystal with ultrasoft pseudopotential and shows satisfactory agreement
with conventional methods.

We must note that the present formulation is an intermediate scheme be-
tween a tight-binding formalism and a fully-selfconsistent (DFT) formalism
with a complete basis set, in the sense that, if we �x basis orbitals f�g and the
Hamiltonian, the formalism is reduced to the tight-binding formulation. One
interesting application of the present formalism is calculations with `partially
�xed' basis orbitals. For many calculations, such as surface structures and
defects in solids, almost all atoms, except those near a surface or a defect, are
the same as in a bulk system. In such a `bulk' or `bu�er' region, localized basis
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Figure 5: E�ect of the additional iterative orthogonalization with respect to the coe�cient

cii0 . The rate of convergence using (a) `perfect' orthogonalization, setting E
(c)
UM = 0, (b)

`perfect' orthogonalization with optimal E
(c)
UM. The basis functions f�g are �xed.

orbitals could be �xed to be `bulk' states in a good approximation. This saves
CPU time and memory space for computation. Even in this case, the calcu-
lation can be fully-selfconsistent, because the Hamiltonian is exactly equal to
that of the DFT with no parameters.
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