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1. Introduction

The study of nanoscale systems requires a large-scale
atomistic simulations with quantum mechanical freedoms of
electrons. The practical requirement to carry out the
simulations is how to extract desired quantities from a given
large Hamiltonian matrix, not only accurately but also
efficiently. Simulation methods in large scale systems have
been studied already in the last decade.1–3) In order to
execute molecular dynamics simulation, one needs informa-
tion about the total energy and forces on an individual atom,
and these physical quantities should be obtained by means of
either eigen states j��i or the one-body density matrix � of
the system;

� ¼
X
�

j��ih��jf
"� � �

kBT

� �
: ð1Þ

Here f ½ð"� � �Þ=ðkBTÞ� is the Fermi–Dirac distribution
function as a function of the eigen energy "� of the eigen
states j��i and the chemical potential � of the system.

The molecular dynamics calculation in large-scale sys-
tems can be done on the basis of transferable short-range
tight-binding Hamiltonians H, where we calculate the
physical property hXi as

hXi ¼ Tr½�X� ¼
X
ij

�ijXji: ð2Þ

Here i and j are suffices of atomic site and orbital. The
energy and forces acting on an atom are contributed only by
elements that have non-zero values of the Hamiltonian
matrix. In other words, even though the density matrix is of
long range, only the short range behavior of the density
matrix is essential.4) Therefore, the essential methodology
for large scale calculations is how to obtain the short range
part of the density matrix � without calculating eigen states
of the original Hamiltonian. The essential point here is the
fact that we adopt the short-range tight-binding Hamiltonian
and this makes computation local. We will only comment

here that the short-range tight-binding Hamiltonian can be
always constructed both in insulators and metals from the
first principle theory.5,6)

We have developed a set of methods, without calculating
eigenstates, of large-scale atomistic simulations, which are
based on generalized Wannier state and hybrid scheme
within fully quantum mechanical description of electron
systems.7–11) These methods are rigorously a linear scale
simulation in atom number, and were tested upto 106 atoms
by using a standard workstation. The generalized Wannier
states are defined formally as unitary transformation of the
occupied eigen states, though eigen states are not actually
obtained. This method is practical and efficient in covalent
bonded materials, where the localized Wannier states
reproduce well the electronic structure energy and the
density matrix, at least its short-range behavior. We
observed that the bond forming and breaking processes are
well described in the localized Wannier states as changes
between a bonding and non-bonding orbital.9,10) In metallic
systems, however, situations are quite different and other
practical methods should be developed.

The aim of the present work is to establish an novel
extension of methodology practical in metals. We will
develop a novel method based on the Krylov subspace (KS)
method to achieve computational efficiency. In §2 we review
the KS method and the density matrix is represented in the
KS. An example will be presented based on our numerical
results. These include a discussion of locality of off-diagonal
elements of the density matrix. In §3, as an example of the
molecular dynamics simulation, the reconstruction of
Si(001) surface will be discussed. We will also show how
the energy spectrum can be obtained in our developed
method. In §4 we summarize the work presented in this
paper.

2. Density Matrix Calculation Based on Krylov Sub-
space Method

In this section, we will show theoretical background of the
KS (Krylov subspace) method to extract density matrix for
molecular dynamics simulation. Short review of the KS�E-mail: takayama@coral.t.u-tokyo.ac.jp
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method is followed by analysis of its arithmetic structure
including convergence property which justifies the present
method.

2.1 Krylov subspace method12,13)

The KS (Krylov subspace) method gives the mathematical
foundation of many numerical iterative algorithms such as
the conjugate gradient method. This method provides an
efficient way to extract the essential character of the original
Hamiltonian within a limited number of basis set. Starting
from a certain vector jii, a subspace of the original Hilbert
space is generated by a set of vectors;

jii;Hjii;H2jii; . . . ;H�K�1jii: ð3Þ

The subspace spanned by the basis vectors fHnjiig in eq. (3)
is generally called the Krylov subspace (KS) in the
mathematical textbooks. The dimension of the KS is denoted
as �K. We will denote the orthonormalized basis vectors in
the KS as

jKðiÞ
1 ið� jiiÞ; jKðiÞ

2 i; jKðiÞ
3 i; . . . ; jKðiÞ

�K
i: ð4Þ

Since the matrix H is Hermitian, the Gram–Schmidt
orthonormalization procedure gives one possible (but not
necessary) choice of the basis set that satisfies the three-term
recurrence relation called the Lanczos process;

bnjKðiÞ
nþ1i ¼ ðH � anÞjKðiÞ

n i � b�n�1jK
ðiÞ
n�1i; ð5Þ

with b�1 � 0. Hereafter we restrict ourselves to real
symmetric Hamiltonian matrix, H.

From the practical point of view of calculations, the
procedure of matrix-vector multiplication, HjKðiÞ

n i, con-
sumes the CPU time mostly, then the number of bases in the
KS (�K) should be chosen to be much smaller than that of the
original Hamiltonian matrix. This drastic reduction of the
matrix size or the dimension of the KS is a great advantage
for a practical large-scale calculations. The dimension of the
KS �K should be chosen, for example, as �K ¼ 30. We then
denote the reduced Hamiltonian as HKðiÞ for the KS fjKðiÞ

n ig.

2.2 Density matrix calculation in the Krylov subspace
In order to extract desired density matrix, we diagonalize

the reduced Hamiltonian matrix HKðiÞ. Once one obtains the
eigenvalue "ðiÞ� and eigenvector jwðiÞ

� i as

HKðiÞjwðiÞ
� i ¼ "ðiÞ� jwðiÞ

� i; ð6Þ

the eigen vector can be expanded in terms of the basis jKðiÞ
n i;

jwðiÞ
� i ¼

X�K
n¼1

C�
�njK

ðiÞ
n i: ð7Þ

We introduce the density matrix operator within the KS:

�̂�KðiÞ �
X�K
�

jwðiÞ
� ihwðiÞ

� jf
"ðiÞ� � �

kBT

� �
: ð8Þ

The essence of the present method is the replacement of
the density matrix hij�̂�jji by that of the KS hij�̂�KðiÞjji;

hij�̂�jji ) hij�̂�KðiÞjji: ð9Þ

Once this procedure is allowed, it is a great advantage from
the view point of practical calculations.

Let us introduce the projection operator;

P̂PKðiÞ �
X�K
�

jwðiÞ
� ihw

ðiÞ
� j ¼

X�K
n

jKðiÞ
n ihKðiÞ

n j: ð10Þ

The crucial point is for the calculation of hij�̂�jji that, though
the state jii is an element of the KS (PKðiÞjii ¼ jii), the state
jjimay be not an element completely included within the KS
(PKðiÞjji 6¼ jji nor 0). Even so, the density matrix of the KS
hij�̂�KðiÞjji holds the following relation;

hij�̂�KðiÞjji ¼
X�K
n

hij�̂�KðiÞjKðiÞ
n ihKðiÞ

n jji: ð11Þ

To show eq. (11) we use a relation

�̂�KðiÞ ¼ �̂�KðiÞP̂PKðiÞ: ð12Þ

The replacement eq. (9) is rigorous when �K is equal to
the dimension of the original Hilbert space. When �K is
much smaller, this replacement (9) can be justified only if
the convergence of the summation in eq. (11) is fast enough
and the contribution from large n is negligible. We will
check the n dependence of both hij�̂�KðiÞjKðiÞ

n i and hKðiÞ
n jji

in §2.3.
Considering the spin degeneracy, the relation of electron

number Nelec and the chemical potential � can be given as

Nelec

2
¼

X
i

hij�̂�KðiÞjii

¼
X
i�

jhijwðiÞ
� ij2f

"ðiÞ� � �

kBT

� �
; ð13Þ

which is used to determine the chemical potential � in the
system.

For short summary of this subsection, we note that the
essential procedure is only the part reducing the dimension
of the original Hamiltonian matrix H to that of the reduced
matrix HKðiÞ. Once we obtain fjwðiÞ

� ig the cost of calculating
fhij�KðiÞjjig for necessary enough number of neighboring
sites and orbitals j of a fixed i is of the order of one,
independent of the system size or the total number of atoms.
And, furthermore, the calculation of them is perfectly
parallelizable with respect to sites and orbitals i.

2.3 Convergence properties of the density matrix
In order to demonstrate the validity of the replacement

eq. (9), we check the convergence of eq. (11). The con-
vergence varies according to the locality of the original
Hamiltonian as well as the choice of starting basis orbitals.
To demonstrate the property, we choose a crystal of diamond
structure with 262,144 atoms using a transferable tight-
binding Hamiltonian.14) We also choose the four sp3 orbitals
per atom as starting basis orbitals fjiig.

Figure 1 shows decay property of �KðiÞin ð� hij�̂�KðiÞjKðiÞ
n iÞ as

a function of the n in the summation of eq. (11). As shown in
the inset, �KðiÞin decays oscillatery. We plot its absolute value
to see the decay behavior. In case of silicon, we can read that
�KðiÞin decays as fast as 1=n2. On the other hand the value of
hKðiÞ

n jji also decays as a function of n due to the fact that the
state jKðiÞ

n i extends over sites reached with n-steps from the
starting state jKðiÞ

1 ið� jiiÞ to cover another localized basis jji
on one site. Decay property of hKðiÞ

n jji depends on j but its
maximum value in the present system decays as 1=n (not
shown in the figure). Therefore, the products in eq. (11)
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decays as 1=n3. We examined several cases in different
system size (512, 4096, 32768, and 262144 atoms), and
found that the decay property is almost independent of the
system size. In case of carbon,15) on the other hand, the
decay rate of �KðiÞin is even more faster, which can be
understood from the locality of the Wannier state.16)

Since the choice of the starting basis is arbitrary, we can
choose the four atomic orbitals at each atom site, (s, px, py,
pz), as starting basis orbitals . Here, however, we choose the
starting bases jii � jKðiÞ

1 i as the four sp3 orbitals, because the
cohesive mechanism is clarified with such hybridized bases.
Due to the crystalline symmetry of diamond structure, the
four sp3 bases are equivalent and only one example is
enough for the explanation of the cohesive mechanism. The
dominant interaction in the Hamiltonian is the hopping along
the sp3 bond. If we ignore other hoppings in the Hamil-
tonian, the Krylov subspace with �K ¼ 2 gives the sp3

bonding and anti-bonding orbitals as

jKðiÞ
1 i � jKðiÞ

2 iffiffiffi
2

p ; ð14Þ

which forms a desirable basis set in the present case.
We would consider an example of possible slowest

convergence of eq. (11) where we can define the Fermi
wave vector kF; Since the three-term recurrence relation in
eq. (5) suggests a mapping of the original system to a one-
dimensional chain model, it is instructive to compare with
simple consideration of one dimensional system with
constant energy a and hopping b in eq. (5). This case
corresponds to the one-dimensional free space, in the
continuum limit, and the density matrix is given by analytic
form

�ðx; x0Þ �
Z kF

�kF

eikðx�x0Þdk ¼
sin kFðx� x0Þ

x� x0
: ð15Þ

This can be understood as 1=n behaviour of �in with
oscillation. Even in this case hKðiÞ

n jji decays as 1=n and the
products in eq. (11) decays as 1=n2. Though the analysis for
other realistic systems like simple cubic lattice will be
shown elsewhere, we should mention that there are several
practical examples where �KðiÞin decays as 1=n.

Further, from the view point of practical calculations, the
decay rate can be controlled by the temperature factor kBT;
The higher the temperature, the faster the decay.17) These
facts validate the convergence of the summation in eq. (11)
and justifies the replacement eq. (9).

2.4 Convergence properties of off-diagonal elements of the
density matrix and the total energy

As an example of the present method, we show the
calculated density matrix and compare with that of diago-
nalization of the original Hamiltonian. We pick up two
nearest neighbor bond sites along a linear path with four sp3

hybrid orbitals jhIi, jhIIi, jhIIIi, jhIVi, where two orbitals fjhIi
and jhIIig and fjhIIIi and jhIVig are on the same bond sites
and fjhIIi and jhIIIig are on the same atom. See inset of Fig. 2
for the configuration and the phases of respective hybrid
orbitals. The exact values of these matrix elements are
calculated by the exact diagonalization of the original
Hamiltonian as follows; hhIj�jhIIi ¼ 0:439, hhIIj�jhIIIi ¼
0:078, hhIj�jhIIIi ¼ �0:008, hhIj�jhIVi ¼ �0:071. These
four are the typical elements between nearest neighbor bond
sites which can be easily understood from the view points of
the Wannier states.11)

When the dimension of the KS increases, the calculated
values of off-diagonal elements of the density matrix
gradually approach to the exact values and saturate. Figure 2
shows the corresponding results for Si crystal with 512
atoms. In the present case they are saturated at around �K ¼
30. The resultant convergent behavior and values are both
excellent.

We note here that the convergence of the total energy
could not be a unique measure of the convergence of the
calculations. The convergence of the total energy is more
rapid in comparison with that of the off-diagonal elements of
the density matrix. In fact, the exact value of the band
energy is �5:082 eV/electron and the calculated deviation

Fig. 1. Decay properties of the off-diagonal density matrix, �KðiÞin , of

262,144 atom for Si (solid square with line) and that for C (open square

with line) as a function of n in the summation of eq. (11) representing

number of hoppings from center atom. The dashed line (two dot dashed

line) is a guide to the eye representing 1=n (1=n2) behavior. Inset shows

�KðiÞin for Si in linear scale.

Fig. 2. Reduced matrix size dependence of the off-diagonal elements of

the density matrix, �ij, of 512 Si atom (open circle with line). The dot

dashed line represents the results of exact diagonalization of the original

Hamiltonian. Inset shows schematic pictures of the sp3 hybrid orbitals

jhIi; jhIIi; jhIIIi, and jhIVi. Solid orbitals in each figure represent the

combination to contribute the density matrix.
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from this is þ80, þ23, þ4, þ1, þ0meV/electron for �K ¼
7, 10, 20, 25, 30, respectively.

It must be mentioned that, for the present covalent bonded
systems, the generalized Wannier state can be reasonably
reproduced by the first order perturbation theory of the sp3

bonding orbitals and the Perturbative Order-N method is
quite efficient.7,9) The computational cost of the present KS
method is less efficient in these systems.

2.5 Computational details and comparison with other
methods

In actual computations, we adopt the following procedure:
[i] Generate the Krylov subspace defined by eq. (4) and

generate eigen states within the KS by eq. (6).
[ii] Determine the chemical potential � from the diagonal

elements of the density matrix by using eq. (13).
[iii] Calculate the off-diagonal elements of the density

matrix through eqs. (8) and (11).
[iv] Calculate forces acting on each atom and move atoms.
[v] Return to the procedure [i].
The computational time and memory size are mostly

consumed in the part of generating the Krylov subspace. The
computational cost of all other procedures is actually
linearly proportional to the number of atoms. Furthermore,
the only global quantity we use is the chemical potential �
and all other calculation is purely independent with respect
to each starting vector. Therefore, the computational routine
is parallelizable, and actually we made use 128 and 256
parallel processors with the Message Passing Interface
(MPI) technique.

Since the present method and the recursion method18–20)

are both based on the construction of the Krylov subspace,
one might suppose that it were an extension of the recursion
method. However, it is not the case. All calculations in the
present method are based on the eigen values and eigen
vectors in the Krylov subspace and one can calculate directly
off-diagonal elements of the density matrix. On the other
hands, the recursion method is the way of calculating the
diagonal Green’s function in a form of the continued
fraction. The discussion in the recursion method is always
based on the diagonal elements of Green’s functions G. The
proposed way to calculate the off-diagonal Green’s function
in the recursion method may be18–20)

Gij ¼
1

2
Giþj;iþj � Gi�j;i�j

� �
; ð16Þ

which needs a lot of computational resources. The recursion
method would recommend, in order to calculate the off-
diagonal Green’s function, to use the recurrence relation of
the Green’s function,21,22) but it contains potential growth of
a numerical rounding error.

The density matrix actually is given by the energy
integration of the Green’s function in the recursion method
as

�ij ¼ �
1

�

Z 1

�1
d" ImGijð"Þf

"� �

kBT

� �
; ð17Þ

which causes a numerical error. The present method is
completely free from above-mentioned difficulties in the
recursion method. All calculations in the present method are
based on the eigen values and eigen vectors in the Krylov
subspace and one can calculate directly diagonal and off-

diagonal elements of the density matrix simultaneously.

3. Example: Results and Discussions for the Surface
Reconstruction of Si(001)

In this section, we demonstrate how the electronic
structure within the KS method gives the correct atomic
structure. We show the results of molecular dynamics
simulation of Si(001) surface reconstruction of a slab system
of 1024 atoms. The essence of the quantum mechanical
freedoms is the fact that sp3-hybrid bonds are formed in the
bulk region, but not on surfaces. Specifically surface atoms
move to form asymmetric dimer.23,24) We will show the
result of the present method and discuss the local electronic
structure and the energy spectrum. We also examine total
energy difference for proposed three reconstructed config-
urations.

3.1 Tilt angle of surface dimers
In ideal Si(001) surface, a pair of surface atoms has four

electrons as dangling bonds. Two of them forms a �-bonding
state and a surface dimer appears. The other two electrons
are directly related to the asymmetric geometry of the
surface dimer. The Hilbert space for these electrons is
restricted to the basis set orthogonal to the �-bonding states
and two back-bond states. If the four atomic orbitals, (s, px,
py, pz) per atom are considered, three freedoms are excluded
by the orthogonality to the above three states. In the
asymmetric dimer, the restricted basis set is given by an
atomic basis of the upper atom with a large s component and
a relatively low energy level and the one of the lower atom
with a large p component and a relatively high energy level.
Then the system can gain the energy, with the increase of s
component, by charge transfer from the lower atom to the
upper one. This mechanism is sometimes called ‘dehybrid-
ization’ in the sense that the sp3-hybridization is cancelled.
(See ref. 9 and the references therein.) In our previous work,
we have observed a dynamical process of forming the
asymmetric dimer, according to the above energy gain
mechanism.9) Therefore the present method should repro-
duce the above energy gain mechanism so as to reproduce
the asymmetric dimer.

One of the factor to characterize the surface dimer is its
tilt angle, �. [See inset of Fig. 3(a).] Theoretical and
experimental data of tilt angle � are reviewed in ref. 25,
and are ranging from 5� to 19�. The reported tilt angle by the
exact diagonalization of the same tight-binding Hamiltonian
is � � 14�,26) while our result based on the KS method is � ¼
13:4� with the size of the KS �K ¼ 30. This result indicates
that the present KS method extracts the essential character of
the original Hamiltonian well. We will discuss in the next
subsection that the asymmetric surface dimer is determined
by the electronic states close to the chemical potential.

3.2 Energy spectrum and the density of states
While methods of density matrix may usually not provide

an information about energy spectrum of electronic struc-
ture, the present method can do at the same time. To discuss
the electronic spectra in the framework of the KS method,
we introduce the Green’s function Gijð"Þ;

Gijð"Þ ¼ ½ð"þ i	� HÞ�1�ij; ð18Þ
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where 	 is an infinitesimally small positive number. Since
the replacement for the density matrix (9) is guaranteed, the
same replacement for the Green’s function is also allowed;

Gijð"Þ ) GKðiÞ
ij ð"Þ; ð19Þ

where the matrix elements of the Green’s function in the KS
is defined as

GKðiÞ
in ð"Þ ¼

X�K
�

C�
�iC�n

"þ i	� "ðiÞ�
: ð20Þ

Actually the Green’s function Gijð"Þ can be calculated with
the Green’s function GKðiÞ

in ð"Þ in the KS as;

GKðiÞ
ij ð"Þ ¼

X�K
n

GKðiÞ
in ð"ÞhKðiÞ

n jji: ð21Þ

Equation (21) is equivalent to (11) and can be proven
similarly by using the projection operator P̂PKðiÞ.

In order to single out the physical insight behind the
asymmetric dimer, we calculate local density of states
(lDOS) per atom of the system with reconstructed surface
with dimer as shown in Fig. 3(a). The lDOS can be defined
as

nIð"Þ ¼ �
1

�

X
�

ImGI�;I�ð"Þ ð22Þ

¼
X�K
�;


jhI�jwðI�Þ

 ij2	ð"� "ðI�Þ
 Þ; ð23Þ

where I and � are the atomic site and orbitals, respectively,

and 
 is suffix for eigen states of the KS. First of all, we see
the lDOS of crystal. Because of the finite number of
computed levels, �K ¼ 30, the shown lDOS has thirty spikes
with weight factor jhI�jwðI�Þ


 ij2 distributed from bottom to
top of the band. Here we have introduced finite imaginary
part, 	 ¼ 0:136 eV (10�2 Ry), to smooth out these spiky
structure. The calculated lDOS of crystal reproduces the gap
that lies within 0–1 eV satisfactory. The lDOS of the deeper
layer of the present slab system is similar to this and does not
change before and after the surface reconstruction as it
should be. In the lDOS for dimerized surface atoms, the
lDOS of the upper (lower) atom has peak at �1:25
(þ0:54) eV in Fig. 3(a). The former (latter) peak corre-
sponds to occupied (unoccupied) surface state and the
difference of the spectra represents the electron charge
transfer from the lower atom to the upper atom in the
asymmetric dimer, as explained in §3.1. In other words, the
Krylov subspace method reproduces the electronic structure
in the asymmetric dimer.

We note here about the two controlling parameters to
reproduce the asymmetric dimer; the size of the KS, �K, and
the temperature factor of the system, T . Both may affect the
convergence speed in eq. (11) as well as the energy
resolution of the simulation. The choice of �K is important
to reproduce the asymmetric dimer since the surface dimer
reflects the electronic structure close to the chemical
potential, in particular the occupied and unoccupied surface
states. The size of the KS should be chosen so large that the
profile of the surface states are well reproduced. Actually,
the calculation with �K < 20 leads unstable value of �, for
example, � ¼ 0:2, 9.8, 14.5, 4.6� for �K ¼ 15, 16, 17, 18,
respectively. While those with �K > 25 gives stable value,
13–14�. We have chosen �K ¼ 30. The choice of T is also
important since the surface states are energetically close to
the chemical potential. The temperature should be chosen so
small that the occupied and unoccupied surface states are
well separated energetically.

In order to see the chemical bonding in condensed
matters, we introduce the following quantity;

CIJð"Þ ¼ �
1

�

X
�;�

ImGI�;J�ð"ÞHJ�;I�: ð24Þ

This is sometimes called the crystal orbital Hamiltonian
populations (COHP).27) The integration of this quantity gives
cohesive energy from a pair of atoms just as the integration
of local DOS gives occupation number. Actually, the total
energy is decomposed into contributions of each atom pair
as a sum of integration over the energy of CIJ ;

Trð�HÞ ¼
X
I;J

X
�;�

�I�;J�HJ�;I� ð25Þ

¼
X
I;J

Z "F

�1
CIJð"Þd": ð26Þ

The analysis of the COHP and the integrated COHP shows
where and how the bond formation stabilizes energetically
the system. The COHP for the dangling bond pair (in ideal
surface) is negligible (not zero), because interaction matrix
element HJ�;I� within the dangling bond pair is very small
due to a larger interatomic distance. Once an surface dimer
is formed (though the atomic pair is the same), the COHP
gives a finite value [Fig. 3(b)], because the interatomic

Fig. 3. (a) Local density of states (lDOS) per atom for the system with

asymmetric dimer and that for the system of crystal. Solid line (broken

line) in upper panel represents an upper (lower) atom of the asymmetric

dimer. (b) COHP and integrated COHP for the corresponding dimer. The

energy zeroth both in (a) and (b) are common and is set to be the top of

the occupied states in the bulk. In order to show the structure we

introduce finite imaginary part, 	 ¼ 0:136 eV, in the energy denominator

of the Green function. The size of the reduced matrix is �K ¼ 30 and the

temperature factor of the system in eq. (8) is T ¼ 1580K (¼ 0:136 eV).

The chemical potential is estimated as � ¼ 0:126 eV.
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distance is shortened and the interaction matrix element
becomes finite. The integration of the COHP has its
minimum almost at the chemical potential. This is a
demonstration of the cohesive mechanism of covalent
bonded materials.

3.3 Energy difference between different configurations of
dimerized Si(001) surface

The dimers may align on the Si(001) surface with three
proposed reconstructed surface configurations, (2� 1), (2�
2), and (4� 2).23,24) Among them, the present calculation
indicates that the (4� 2) configuration is that of the lowest
energy. The calculated energy differences from the (4� 2)
structure are 86.7meV/dimer for Eð2�1Þ and 0.3meV/dimer
for Eð2�2Þ. These values agree well with the exact calculation
using the same Hamiltonian, Eð2�1Þ � Eð4�2Þ ¼ 73:6meV/
dimer and Eð2�2Þ � Eð4�2Þ ¼ 1:2meV/dimer, respectively.26)

This shows that the numerical error with the KS method is
small and the present method gives a satisfactory results in a
fine energy scale with tight-binding Hamiltonian. On the
other hand, we should comment that the tight-binding
formulation itself can be the another origin of an error. In
general, the energy scale in meV/atom is too fine to discuss
in the present tight-binding Hamiltonian. An ab initio
calculation gives Eð2�1Þ � Eð4�2Þ ¼ 51� 21 and Eð2�2Þ �
Eð4�2Þ ¼ 3� 13meV/dimer, respectively.24)

4. Conclusions

In the present paper we presented a novel method using
the Krylov subspace for the molecular dynamics simulation
based on large-scale electronic structure calculation. By
means of the reliable treatment of the reduced matrix
deduced from the Krylov subspace method, the method
provide an efficient and practical way to calculate the
density matrix. The method also provides a way to calculate
the energy spectrum on the same standpoint as the density
matrix. As an example, the method is applied to the problem
of the surface reconstruction of Si(001). We have pointed
out through its analysis that the appropriate choice of the two
controlling parameters, the size of the Krylov subspace and
the temperature factor, is important. Both may affect the
computational cost and the accuracy. Though the present
calculation is just one example, it leads us to a general
guiding principle in choosing the optimal values of the
controlling parameters.

In the present methodology the computational procedure
of the density matrix, �ij, is independent for each atomic
orbital, i, except the determination of the chemical potential,
then the present method is very preferable for the parallel
computation. Moreover, this independency of the basis lead
us a hybrid scheme within quantum mechanics.9) In the
hybrid scheme, the density matrix is decomposed into sub
matrices and the sub matrices are determined by different
methods. Molecular dynamics simulation with 105 atoms by
the hybrid scheme between the present KS method and the
perturbative Wannier state method is examined and will be
published elsewhere.

Since this newly developed method is a general theory for
large matrices, the method is applicable for not only

covalent bonded materials but also other systems like metal.
The present KS method has a potentiality of wide ap-
plicability, even in non-Hermitian matrix, since the funda-
mental concept lies in the general linear algebra of large
matrices.
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25) J. Pollman, P. Krüger, M. Rohlfing, M. Sabisch and D. Vogel: Appl.

Surf. Sci. 104–105 (1996) 1.

26) C. C. Fu, M. Weissman and A. Saúl: Surf. Sci. 494 (2001) 119.
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