

T. Hoshi, Y. Iguchi, and T. Fujiwara, PRB72, 075323 (2005)

T. Hoshi, JPCM19, 365243, 7pp, (2007)

T. Hoshi, M. Tanikawa, A. Ishii, Physica E 42, 2784 (2010)

(1)

(2)

工学的視点:破壊研究=材料強度研究 (半導体「疲労」→MEMSデバイスなど) 理学的視点:perfect (dislocation-free) Si crystal→理想的な脆性 cf. 蕪木英雄・寺倉 清之「破壊・フラクチャの物理」岩波(2007)のp.115

Pioneering work (1) : Griffith theory for crack propagation

Energy of a crack with the crack length of 2c

$$U = -\frac{\pi c^2 \sigma^2}{E} L_z + 4\gamma c L_z$$
(1)
E: Yong modulus (in 2D)
 γ : surface energy

A. Griffith, Philos. Trans. R. Soc. London Ser. A 221, (1920).

(1st term):energy gain of stress relaxzation(2st term):energy loss of surface creation

Condition for crack propagation

$$0 = \frac{dU}{dc} = -\frac{\pi\sigma^2}{E} 2cL_z + 4\gamma L_z$$
 (2)

 \rightarrow Critical crack length for propagation

$$c = c_{\rm G} \equiv \frac{2}{\pi} \frac{\gamma E}{\sigma^2} \tag{3}$$

Pioneering work (2): Mott theory for fracture propagation velocity

N. F. Mott, Engeering 165, 16 (1948).

Introducing the kinetic energy term as

$$K = \frac{\rho}{2} k v^2 c^2 \frac{\sigma^2}{E^2} L_z \tag{4}$$

v : fracture propagation velocity *ρ* : density *k* : small numerical factor

Condition for crack propagation

$$\frac{d}{dc}\left(U+K\right) = 0\tag{5}$$

→ Fracture propagation velocity

$$v = \sqrt{\frac{2\pi}{k}} \sqrt{\frac{E}{\rho}} \left(1 - \frac{c_{\rm G}}{c}\right)^{1/2}$$

$$\rightarrow \sqrt{\frac{2\pi}{k}} \sqrt{\frac{E}{\rho}} \quad (c \gg c_{\rm G})$$
(6)
(7)

Atomistic viewpoints of fracture

Cleavage as non-equillibrium dynamics

- Two **comparable** timescales : Tprop (propagation) Trecon (reconstruction)
 - \rightarrow Local reconstruction mechanism
 - ex. Si(111)-(2x1) structure
 = nearest neighbor coupling in the propagation direction
 = quantum mechanical feature

Silicon cleavage simulation with (111)-2x1 reconstruction

T. Hoshi, Y. Iguchi, T. Fujiwara, PRB72, 075323 (2005)

Technical details 10⁴-10⁵ atoms Dynamics in ~10 ps External load for cleavage Quantitative agreement with experiments $K_{\rm C}$: critical stress intensity factor $V_{\rm p}$: crack propagation velocity

* Spence, et al., Acta Metall. Mater. 41, 2815 (1993). ** Hauch, et al., PRL82, 3823 (1999) Application : Si(111)-(2x1) cleavage simulation

Hoshi, Iguchi, Fujiwara, PRB72, 075323 (2005)

 $\rightarrow \pi$ -bonded (Pandey) structure with tilting Steps are formed in large (10-nm-scale) samples

В

[111]

→[211]

14 nm [211] 0.7 nm STEP 5 6 5 7 7 5 5 5 5

Surface (π -bonding) state

Example of STM experiment

Silicon cleavage simulation with electronic structure

Which plane (index) appears ?Plane with small surface energy ?Plane with small number of dangling bonds ?

Missing viewpoints
 (a) reconstruction with energy gain
 (b) non-equillibrium dynamics

Si:surfac	e energie order of 1 eV	es [J/m ²] // surf. atom)
(111)	1.44 (2x1)	1.82 ideal
(110)	1.70 buckled	2.04 ideal
(001)	1.41 c(4x2)	2.39 ideal

Cleavege planes in macro samples (111) plane in metastable (2x1) str. (110) plane (less favorable)

 \rightarrow (001) plane is impossible ?

Bending of cleavage path into favorite planes

(as a size effect on 10-nm-scale or larger)

→ Experimentally observed planes
: (111) or (110) plane [less favarable]

Bending of cleavage path into favorite planes

Artificial cleavage 'seed': (001) plane \rightarrow Experimentally observed planes

: (111) or (110) plane [less favarable]

Si(111)-(2x1) surface : LDOS and bias-dependent STM

STM image of flat (unstepped) surface area

→ The spot positions are different for different signs of voltage bias, as expected.

Stepped Si(111)-2x1 surface formed in clevage dynamics

→ Stability Bias-dependent STM image

→A hierarchical research
(a) Prediction by the large-scale
(10nm-scale) calculation
(b) (c) Confirmation by
the DFT-PW calculation
with a small system

Conclusion

Si cleavage simulation with electronic struture calculations

- Preference of (111) and (110) cleavage surface is shown (a) dynamical theory (b) bending of cleavage planes
- Appearance of (111)-2x1 (Pandey) surface prediction of steps with bias-dependent STM image
 → consistent to experimental STM images