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Tutorial : What is electronic structure calculation ?
  → (a) quantum-mechanical ‘wave’ theory 
             for electrons in materials (*)
       (b) basics of many nanomaterial simulations
  → effective Schrodinger equation
  → generalized Hermitian eigen-value problem 
         (as a typical numerical problem)

(*)Walter Kohn (1923~) 
   Nobel Prize in Chemistry 1998

λ： energy for each electron (’eigen energy’)
 y ： shape of electrnic ‘wave’ (’wavefunction’)(**)
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aPF :amourphous-like conjugated polymer, poly-(9,9 dioctil-fluorene), 
NCCS: sp2-sp3 nano composite carbon solid

‘ELSES’ : Our code for ‘order-N’ electronic state calculations  
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Methodology
・Oringinal linear-algebraic order-N algorithms 
    with generalized shifted linear equations

・Applicable both to metals and insulators
・Modelled (TB-type) systems,  based on ab initio calc., 
・A DFT-derived charge-self-consistent formulation (optional)



 Examples of nano-material studies with ‘ELSES’

MDsilicon brittle fracture
17 nm

L=12nm

helical gold nanowire
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Amourphous-like conjugated polymer
  (poly-(9,9 dioctyl fluorene)

sp2-sp3 nano-composite carbon solid
   ( for nano-polycrystalline diamond )

Motivations
 (i)  industrial application
 (ii) new material (from Japan)
(iii) standard material

Ionic liquid (PP13‒TFSI)

Li+ diffusion 
  in solids
(Nishino et al.)
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Amourphous-like conjugated polymer
  (poly-(9,9 dioctyl fluorene)

sp2-sp3 nano-composite carbon solid
   ( for nano-polycrystalline diamond )

Motivations
 (i)  industrial application
 (ii) new material (from Japan)
(iii) standard material

Ionic liquid (PP13‒TFSI)

Li+ diffusion 
  in solids
(Nishino et al.)Recent paper : 

 S. Nishino (U Tokyo)
 T. Fujiwara (U Tokyo),
 H. Yamasaki (Toyota), 
 S. Yamamoto (Tokyo U. Tech.), 
 T. Hoshi (Tottori U),  
 Solid State Ionics 225, 
  22‒25 (2012).

Recent paper : 
 T. Hoshi, S. Yamamoto, 
 T. Fujiwara, T. Sogabe,  
 S-L Zhang, J. Phys.: CM 24, 
  165502 (2012) ; 
 (Acknowl. : M. Ishida 
    (Sumitomo Chemical Co.) ) 
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calculation of 
physical quantitiesmatrix solver

iterative loop

Application-Algorithm-Architecture co-design
→ algorithm design for the entire calculation procedure; 
       as the iterative loop of 
         (matrix generation) + (matrix solver) + (calculation of physical quantities)

matrix 
 generation

 ( G. Eigen-Value eqn. or
   G. Shifted Linear eqn. )

Key issue : mathematical structure 
                   of quantum physical quanties



Typical types of quantum physical quantities 

ex. πconjugated polymer: 
      poly-(9,9 dioctil fluorene)

(1) Energy and force 
    (for structure-dynamics simulation)
　→ physical quantity in trace form

(2) Electronic spectrum 
       (density of states, and so on)
　→ weighted eigen-value histogram

(3) Specific eigen states 
       (Fig. HOMO and LUMO)
　→ interior eigen-pair problem

Ref. Hoshi, et al. JPCM 24, 
    165502 (2012)

focused here



Mathematical structure of quantum physical quantities

Physical quantity with a given matrix X 
       (Ex. the case of  X = H 
           --> Electronic structure energy)

with the density matrix

Generalized eigen-value problem

(1)

(2)

(3)

Physical quantity in trace form

with a given weight funciton
     (’Fermi distribution function’)

( a ‘smoothed’ 
       step function )

(   , ,       : given parameters )

(4)

(5)



Quantum physical quantities in trace form 
      Sparse property of physical quantity 

→ “Quantum locality” 
       or “Nearsightedness  principle” 
          W. Kohn, Phys. Rev. Lett, 76, 3168  (1996)

( X : a sparse matrix )

When we calculate a physical quantity Simplest example

We need only 
       thse elements !!



calc. of quantum 
physical quantitiesmatrix solver

iterative loop

Algorithm design for the entire calculation process

matrix 
 generation

G. Eigen-Value eqn.

G. Shifted Linear eqn. 

Conlusion of ‘Application-Algotirhm-Architecture co-design’

present

conventional

→ We are focusing on the calcualtion of ‘physical quantities in trace form’ 

(in trace form)
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          H, S : Hermitian, S: positive definite ( S ≒ I )

Basic equations

          (  z : complex energy )

Generalized eigen-value (GEV) equation

Generalized shifted linear (GSL) equations

with                                       : the Green’s function

non-Hermitian

wavefunction 
  formulation

the propagation 
(Green’s) function 
     formulation



Novel  linear algebraic algorithms 

*Takayama et al., JPSJ73, 1519 (2004); Takayama et al. PRB 73, 165108(2006); 
Sogabe et al. ETNA31, 126 (2008)

Gerlerkin Principle

Collinear Residual

gLanczos, gArnoldi, 
mArnodi, Arnoldi (M;W;G)

gsCOCG, 
gsQMR

S=I *S≠I

subs. diag.

sCOCG, 
sQMR

[1] Teng et al., PRB 83, 165103 (2011); [2] Hoshi et al, JPCM 24, 165502 (2012). 
[3] Sogabe  JCP 231, 5669 (2012);   [4] Yamashita et al., Trans. JSIAM 21, 241 (2011). 

→ Iterative (Krylov subspace) solvers for generalized shifted linear equation 

Mathematical 
  principles

non-hermitian 
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(2-a) Gerlerkin Principle
→  “Orthogonality” principle on the residual vector
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→  drastic reduction of 
         mat-vec multiplications

(2-b) Collinear Residual Theorem*
     from the  shift invariance of Krylov subspace 

*Frommer, Computing 
    70, 87 (2003)
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Overview of multiple Arnoldi method (1/2)  
Hoshi et al., J. Phys.: Condens. Matter 24, 165502 (2012)

Original problem :                                     (generalized eigen-value equation)    (1)  

:  real-symmetric,  : positive definite 

Def.: subspace eigen pair : 

Def.: residual vector: 

Def.: multiple Krylov subspace 

Galerkin principle : 
     so as to determine the subspace eigen pair of 
→ standard eigen-value equation within the subspace 

  (2)  

  (3)  

  (4)  

  (5)  



Overview of multiple Arnoldi method (detailed formulation)  
Hoshi et al., J. Phys.: Condens. Matter 24, 165502 (2012)

Subspace 

Original problem

      with ‘S’-orthogonal bases : 
  

Subspace eigen pair :  

    (  generated by
            the Gram-Schmidt procedure)

The Galerkin principle (                         ) 
        determines as 

with the ‘redueced’ (νx ν) matrix 

(a)

(b)

(c)

(d)

(e)

(f)

The subspace Green function 

(g)



Overview of multiple Arnoldi method (2/2)  

Why multiple subspace ? 

Def.: density matrix 
      in the fully-filled limit (FFL) :  

  (6)  

→ Exact reproduction of some physical properties within the subspace  

Def.: Projected physical quantity 
         in the FFL :  

: arbitrary real-symmetric matrix 
  (ex.                     : the case of energy  )   

Theorem: 
   If             , then  

Note : 

En
er

gy
  [

eV
 / 

at
om

]

Subspace dimension (p+q)

76 

78 

77 
 q ≠ 0

0                50              100

 q = 0

Ex.                       with 

(        : subspace eigen vectors )

  (7)  

  (8)  

  (9)  

Hoshi et al., J. Phys.: Condens. Matter 24, 165502 (2012)



Summary of novel Krylov subspace methods
Hoshi et al., J. Phys.: Condens. Matter 24, 165502 (2012)

・ The original matrix equation 
(1)

is reduced into a smaller matrix equation within the multiple Krylov subspace of 

(2)

・ The multiple Krylov subspace of (2) is used,  because of 
     the exact conservation law of fully-filled-limit (FFL) projected physical quantites

(3)

Summary of multiple Arnoldi method

 Six solvers for generalized shifted linear equation 

non-hermitian 

 → See the reference list in the abstract for details 
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Post-calculation analysis method  
    

Large-scale calculation
  by  massively-parallel computers

Huge elctronic structure data
  ( as the Green’s function )

Physical conclusions

Post-calculation analysis

......is crucial, so as to obtain physical conclusions from huge electronic-structure data

distributed among nodes

ex. (π)COHP analysis 
         →next page



Ex. sp2 and sp3 nano composite carbon solid with 100K atoms
→ the distinction of sp2 and sp3-domains 

Visualization with massively parallel data analysis
   based on the Green-function theory  (π-COHP*) 

       

17 nm

(A) Visualize sp2 and sp3 domains (B) Visualize only sp2 domains

sp2-sp3
domain  
boundary 

*Hoshi, et al., JPSJ 82, 023710 (2013)
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Architecture-related issues
 →  Better performace on the supercomputers, such as  the K computer
    
1. Optimal balance between 
            operation cost, communication cost and memory cost.
　→ ex. memory-saving workflow

2. Parallel file IO
       hardware : built-in parallel file IO funciton on the K computer
       software   : use of split XML files 



.... reduces the memory size drastically;  
           ex.  28GB→1.6GB (with 100 K atom) 

 The data array for the Green’s function, the biggest one,
       is not stored in the memory but recalculated

Memory-saving workflow 



Parallel file IO with split XML file

read

single XML file

read read read read

split XML files

ex. Acceralation in the initial procedure with 10M atoms 
   

(a) with non-parallel file reading
        →　T =1426.6 sec

(b) with parallel file reading
        →    T =     69.6 sec   
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Typical types of quantum physical quantities 

ex. πconjugated polymer: 
      poly-(9,9 dioctil fluorene)

(1) Energy and force 
    (for structure-dynamics simulation)
　→ physical quantity in trace form

(2) Electronic spectrum 
       (density of states, and so on)
　→ weighted eigen-value histogram

(3) Specific eigen states 
       (Fig. HOMO and LUMO)
　→interior eigen-pair problem

Ref. Hoshi, et al. JPCM 24, 
    165502 (2012)

Problem : 
    the calculation of the k-th eigen pair 
       for a given value of  k 

For specific electrons 
      responsible for material properties in 
            electronics and optics

cf. D. Lee et al.,  19. on this conference



‘Open Data’ :  ELSES matrix library
http://www.elses.jp/matrix/

Note :  Matrix property is significantly different among materials. 
  

→For further collaboration between physics and applied mathematics

(a) Solid gold (b) amorphous-like conjugated polymer 
             (poly(9,9) dioctil fluorene) 

→Matrix data in our real problem with the matrix size of M = 102 ~106
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