Krylov subspace theories and

ultra-large-scale electronic state calculations on the K computer

(as an interdiciplenary reseach between physics and applied mathematics)

T. Hoshi(星健夫)^{1,2}, T. Sogabe(曽我部知広)^{3,2}, T. Miyata(宮田考史)^{4,2}, S.-L. Zhang(張紹良)^{4,2}

- 1. Tottori University, Japan;
- 2. Core Research for Evolutional Science and Technology,
 - Japan Science and Technology Agency (CREST-JST), Japan;
- 3. Aichi Prefecture University, Japan;
- 4. Nagoya University, Japan

Krylov subspace theories and

ultra-large-scale electronic state calculations on the K computer

(as an interdiciplenary reseach between physics and applied mathematics)

1. Overview : Application-Algorithm-Architecture co-design

- 1-a. Overview from physics
- 1-b. ELSES : our code
- 1-c. Overview from mathematics
- 2. Krylov-subspace theories
 - for generalized shifted linear equation
- 3. 'Big data' (post-simulation) analysis.
- 4. Perforcance issues on the supercomputer
- 5. For further collaboration
 - between physics and applied mathematics.
 - 5-a. Interior eigen-pair problem
 - 5-b. 'Open data' for matrix

a common concept in the current computational physics

a common concept in the current computational physics

Application :

Materials research with electronic structure

Tutorial : What is electronic structure calculation ?

- \rightarrow (a) quantum-mechanical 'wave' theory for electrons in materials (*)
 - (b) basics of many nanomaterial simulations
- \rightarrow effective Schrodinger equation
- → generalized Hermitian eigen-value problem (as a typical numerical problem)

$H\boldsymbol{y} = \lambda S\boldsymbol{y}$

λ: energy for each electron ('eigen energy')
y: shape of electrnic 'wave' ('wavefunction')(**)

(*)Walter Kohn (1923~) Nobel Prize in Chemistry 1998

a common concept in the current computational physics

Application :

Materials research with electronic structure

Tutorial : What is electronic structure calculation ?

- → (a) quantum-mechanical 'wave' theory for electrons in materials (*)
 - (b) basics of many nanomaterial simulations
- \rightarrow effective Schrodinger equation
- → generalized Hermitian eigen-value problem (as a typical numerical problem)

$H\boldsymbol{y} = \lambda S\boldsymbol{y}$

 λ : energy for each electron ('eigen energy') y: shape of electrnic 'wave' ('wavefunction')(**) (**)Exmaple of electronic 'wave' (wave function)
 → one of Benzene (C₆H₆)

a common concept in the current computational physics

http://www.elses.jp

'ELSES': Our code for 'order-N' electronic state calculations

Hoshi et al., JPCM24, 165502 (2012); JPSJ 82, 023710 (2013).

Benchmark with nanomaterials (~100M atoms \rightleftharpoons Si : (120nm)³region)

aPF :amourphous-like conjugated polymer, poly-(9,9 dioctil-fluorene), NCCS: sp2-sp3 nano composite carbon solid

'ELSES': Our code for 'order-N' electronic state calculations

Hoshi et al., JPCM24, 165502 (2012); JPSJ 82, 023710 (2013).

Benchmark with nanomaterials (~100M atoms \rightleftharpoons Si : (120nm)³region)

aPF :amourphous-like conjugated polymer, poly-(9,9 dioctil-fluorene), NCCS: sp2-sp3 nano composite carbon solid

http://www.elses.jp

Examples of nano-material studies with 'ELSES'

http://www.elses.jp

Examples of nano-material studies with 'ELSES'

Krylov subspace theories and

ultra-large-scale electronic state calculations on the K computer

- (as an interdiciplenary reseach between physics and applied mathematics)
 - 1. Overview : Application-Algorithm-Architecture co-design
 - 1-a. Overview from physics
 - 1-b. ELSES : our code
 - 1-c. Overview from mathematics
 - 2. Krylov-subspace theories
 - for generalized shifted linear equation
 - 3. 'Big data' (post-simulation) analysis.
 - 4. Perforcance issues on the supercomputer
 - 5. For further collaboration
 - between physics and applied mathematics.
 - 5-a. Interior eigen-pair problem
 - 5-b. 'Open data' for matrix

a common concept in the current computational physics

Application-Algorithm-Architecture co-design

→ algorithm design for the entire calculation procedure; as the iterative loop of (matrix generation) + (matrix solver) + (calculation of physical quantities)

Typical types of quantum physical quantities

Mathematical structure of quantum physical quantities

Generalized eigen-value problem

$$H \boldsymbol{y}_k = \lambda_k S \boldsymbol{y}_k$$
 (1)

Physical quantity with a given matrix X(Ex. the case of X = H--> Electronic structure energy)

$$\langle X \rangle \equiv \sum_{k} f(\lambda_k) \, \boldsymbol{y}_k^{\mathrm{t}} X \boldsymbol{y}_k \quad (2)$$

with a given weight funciton ('Fermi distribution function')

$$f(\lambda) \equiv \frac{1}{\exp(\beta(\lambda - \mu)) + 1}$$
 (3)
(β, μ : given parameters)

Physical quantity in trace form

$$\langle X \rangle = \operatorname{Tr}[X \rho]$$
 (4)

with the density matrix

$$\rho \equiv \sum_{k} f(\lambda_k) \boldsymbol{y}_k \boldsymbol{y}_k^{\mathrm{t}}$$
(5)

Quantum physical quantities in trace form Sparse property of physical quantity

When we calculate a physical quantity

$${
m Tr}[X
ho] = \sum_{i,j} X_{ij}\,
ho_{ji}$$
 (X : a sparse matrix

We need the selected elements of $\{\rho_{ji}\}$ only among the (i, j) pairs with $X_{ij} \neq 0$, even if ρ is a dense matrix.

→ "Quantum locality"
 or "Nearsightedness principle"
 W. Kohn, Phys. Rev. Lett, 76, 3168 (1996)

Algorithm design for the entire calculation process

 \rightarrow We are focusing on the calcualtion of 'physical quantities in trace form'

Krylov subspace theories and

ultra-large-scale electronic state calculations on the K computer

(as an interdiciplenary reseach between physics and applied mathematics)

1. Overview : Application-Algorithm-Architecture co-design

1-a. Overview from physics

1-b. ELSES : our code

1-c. Overview from mathematics

2. Krylov-subspace theories

for generalized shifted linear equation

- 3. 'Big data' (post-simulation) analysis.
- 4. Perforcance issues on the supercomputer
- 5. For further collaboration
 - between physics and applied mathematics.
 - 5-a. Interior eigen-pair problem
 - 5-b. 'Open data' for matrix

Basic equations

Generalized eigen-value (GEV) equation

 $H\boldsymbol{y}_k = \varepsilon_k S \boldsymbol{y}_k$

 $\boldsymbol{x} = G\boldsymbol{b}$

H, *S* : Hermitian, *S*: positive definite ($S \rightleftharpoons I$)

 $G = \sum_k rac{oldsymbol{y}_k oldsymbol{y}_k^{\mathrm{T}}}{z - arepsilon_k}$

Generalized shifted linear (GSL) equations

 $(zS - H)\mathbf{x} = \mathbf{b}$ (z:complex energy) non-Hermitian the propagation (Green's) function formulation

wavefunction

formulation

with
$$G \equiv (zS - H)^{-1}$$
 : the Green's function

[1] Teng et al., PRB 83, 165103 (2011); [2] Hoshi et al, JPCM 24, 165502 (2012).
[3] Sogabe JCP 231, 5669 (2012); [4] Yamashita et al., Trans. JSIAM 21, 241 (2011).

→ Iterative (Krylov subspace) solvers for generalized shifted linear equation

$$(\underline{H-zS})\boldsymbol{x} = \boldsymbol{b}$$

non-hermitian

Mathematical principles	$S \neq I$	S=I*
Gerlerkin Principle	gLanczos, gArnoldi, mArnodi, Arnoldi (M;W;G)	subs. diag.
Collinear Residual	gsCOCG, gsQMR	sCOCG, sQMR

[1] Teng et al., PRB 83, 165103 (2011); [2] Hoshi et al, JPCM 24, 165502 (2012).
[3] Sogabe JCP 231, 5669 (2012); [4] Yamashita et al., Trans. JSIAM 21, 241 (2011).

 \rightarrow Iterative (Krylov subspace) solvers for generalized shifted linear equation

[1] Teng et al., PRB 83, 165103 (2011); [2] Hoshi et al, JPCM 24, 165502 (2012).
[3] Sogabe JCP 231, 5669 (2012); [4] Yamashita et al., Trans. JSIAM 21, 241 (2011).

→ Iterative (Krylov subspace) solvers for generalized shifted linear equation

[1] Teng et al., PRB 83, 165103 (2011); [2] Hoshi et al, JPCM 24, 165502 (2012).
[3] Sogabe JCP 231, 5669 (2012); [4] Yamashita et al., Trans. JSIAM 21, 241 (2011).

→ Iterative (Krylov subspace) solvers for generalized shifted linear equation

$$(\underline{H-zS})\boldsymbol{x} = \boldsymbol{b}$$

non-hermitian

Mathematical principles	$S \neq I$	S=I*
Gerlerkin Principle	gLanczos, gArnoldi, mArnodi, Arnoldi (M;W;G)	subs. diag.
Collinear Residual	gsCOCG, gsQMR	sCOCG, sQMR

Overview of multiple Arnoldi method (1/2)

Original problem : $Hy = \lambda Sy$ (generalized eigen-value equation) (1)

H,S: real-symmetric, S: positive definite

Def.: multiple Krylov subspace

$$\mathcal{L} \equiv K_p(H; \boldsymbol{b}) \oplus K_q(H; S^{-1}\boldsymbol{b})$$
 (2)

Def.: subspace eigen pair : $(arepsilon_{lpha}, oldsymbol{v}_{lpha})$ (3)

$$(\boldsymbol{v}_{\alpha} \in \mathcal{L}, \ \alpha := 1, 2, ..., p + q)$$

Def.: residual vector: $m{r}_{lpha}\equiv (H-arepsilon_{lpha}S)m{v}_{lpha}$ (4)

Galerkin principle : $\boldsymbol{r} \perp \mathcal{L}$ (5) —

so as to determine the subspace eigen pair of $(arepsilon_lpha,oldsymbol{v}_lpha)$

 \rightarrow standard eigen-value equation within the subspace

Overview of multiple Arnoldi method (detailed formulation)

Original problem Subspace eigen pair : $(\varepsilon_{\alpha}, v_{\alpha}) \ (v_{\alpha} \in \mathcal{L})$ $H\mathbf{y} = \lambda S\mathbf{y}$ (a) $\boldsymbol{v}_{\alpha} = \sum^{\nu} C_{n\alpha} \boldsymbol{u}_n$ (d) Subspace The Galerkin principle ($\varepsilon_{\alpha}, \{C_{n\alpha}\}_n$) $\mathcal{L} \equiv K_p(H; \boldsymbol{b}) \oplus K_q(H; S^{-1}\boldsymbol{b})$ determines as $= \text{span}\{u_1, u_2, ..., u_{\nu}\}$ (b) $\sum \mathcal{H}_{mn}C_{n\alpha} = \varepsilon_{\alpha}C_{m\alpha}$ $(\nu \equiv p+q)$ (e) with 'S'-orthogonal bases : $\{u_m\}$ with the 'reduced' ($v \ge v$) matrix $\boldsymbol{u}_i^T S \boldsymbol{u}_i = \delta_{i,i}$ (C) $\mathcal{H}_{mn} \equiv \boldsymbol{u}_n^{\mathrm{T}} H \boldsymbol{u}_m$ (f) (generated by The subspace Green function the Gram-Schmidt procedure) $G^{(b)}\equiv\sum_{\alpha}^{
u}rac{oldsymbol{v}_{lpha}oldsymbol{v}_{lpha}}{z-arepsilon_{lpha}}$ (g)

Overview of multiple Arnoldi method (2/2)

Why multiple subspace?
$$\mathcal{L} \equiv K_p(H; \boldsymbol{b}) \oplus K_q(H; S^{-1}\boldsymbol{b})$$
 $(\nu \equiv p+q)$

 \rightarrow Exact reproduction of some physical properties within the subspace

Def.: density matrix in the fully-filled limit (FFL) :

$$\Omega \equiv \sum_{\alpha}^{\nu} \boldsymbol{u}_{\alpha} \boldsymbol{u}_{\alpha}^{\mathrm{T}} \qquad (6)$$

($oldsymbol{v}_{lpha}$: subspace eigen vectors)

- Def.: Projected physical quantity in the FFL : $\boldsymbol{b}^{\mathrm{T}}\Omega X \boldsymbol{b}$ (7)
 - $X\,$: arbitrary real-symmetric matrix (ex. $X=H\,\,$: the case of energy)

Theorem: If $q \neq 0$, then $\boldsymbol{b}^{\mathrm{T}} \Omega X \boldsymbol{b} = (\mathrm{exact})$ (8) Note: $\Omega \neq (exact)$ (9)

Summary of novel Krylov subspace methods

Six solvers for generalized shifted linear equation

$$(\underbrace{H-zS}_{\text{non-hermitian}})\boldsymbol{x} = \boldsymbol{b}$$

 \rightarrow See the reference list in the abstract for details

Summary of multiple Arnoldi method

(1)

• The original matrix equation

$$H \boldsymbol{y} = \lambda S \boldsymbol{y}$$

is reduced into a smaller matrix equation within the multiple Krylov subspace of

 $\mathcal{L} \equiv K_p(H; \boldsymbol{b}) \oplus K_q(H; S^{-1}\boldsymbol{b})$ (2)

 The multiple Krylov subspace of (2) is used, because of the exact conservation law of fully-filled-limit (FFL) projected physical quantites

$$\boldsymbol{b}^{\mathrm{T}}\Omega X \boldsymbol{b} = (\mathrm{exact}) \tag{3}$$

Krylov subspace theories and

ultra-large-scale electronic state calculations on the K computer

- (as an interdiciplenary reseach between physics and applied mathematics)
 - 1. Overview : Application-Algorithm-Architecture co-design
 - 1-a. Overview from physics
 - 1-b. ELSES : our code
 - 1-c. Overview from mathematics
 - 2. Krylov-subspace theories
 - for generalized shifted linear equation
 - 3. 'Big data' (post-simulation) analysis.
 - 4. Perforcance issues on the supercomputer
 - 5. For further collaboration
 - between physics and applied mathematics.
 - 5-a. Interior eigen-pair problem
 - 5-b. 'Open data' for matrix

Post-calculation analysis method

.....is crucial, so as to obtain physical conclusions from huge electronic-structure data

*Hoshi, et al., JPSJ 82, 023710 (2013)

Visualization with massively parallel data analysis based on the Green-function theory (π -COHP*)

Ex. sp2 and sp3 nano composite carbon solid with 100K atoms \rightarrow the distinction of sp2 and sp3-domains

(A) Visualize sp2 and sp3 domains

(B) Visualize only sp2 domains

Krylov subspace theories and

ultra-large-scale electronic state calculations on the K computer

- (as an interdiciplenary reseach between physics and applied mathematics)
 - 1. Overview : Application-Algorithm-Architecture co-design
 - 1-a. Overview from physics
 - 1-b. ELSES : our code
 - 1-c. Overview from mathematics
 - 2. Krylov-subspace theories
 - for generalized shifted linear equation
 - 3. 'Big data' (post-simulation) analysis.
 - 4. Perforcance issues on the supercomputer
 - 5. For further collaboration
 - between physics and applied mathematics.
 - 5-a. Interior eigen-pair problem
 - 5-b. 'Open data' for matrix

Architecture-related issues

- → Better performace on the supercomputers, such as the K computer
- 1. Optimal balance between
 - operation cost, communication cost and memory cost.
 - \rightarrow ex. memory-saving workflow
- 2. Parallel file IO

hardware : built-in parallel file IO funciton on the K computer software : use of split XML files

Memory-saving workflow

.... reduces the memory size drastically; ex. 28GB→1.6GB (with 100 K atom)

The data array for the Green's function, the biggest one, is not stored in the memory but recalculated

$$(H,S) \Rightarrow G \Rightarrow \mu \Rightarrow (\text{recalc. of } G) \Rightarrow \rho$$

Parallel file IO with split XML file

ex. Acceralation in the initial procedure with 10M atoms

(a) with non-parallel file reading \rightarrow T =1426.6 sec

(b) with parallel file reading \rightarrow T = 69.6 sec

Krylov subspace theories and

ultra-large-scale electronic state calculations on the K computer

- (as an interdiciplenary reseach between physics and applied mathematics)
 - 1. Overview : Application-Algorithm-Architecture co-design
 - 1-a. Overview from physics
 - 1-b. ELSES : our code
 - 1-c. Overview from mathematics
 - 2. Krylov-subspace theories
 - for generalized shifted linear equation
 - 3. 'Big data' (post-simulation) analysis.
 - 4. Perforcance issues on the supercomputer
 - 5. For further collaboration
 - between physics and applied mathematics.
 - 5-a. Interior eigen-pair problem
 - 5-b. 'Open data' for matrix

Typical types of quantum physical quantities

'Open Data': ELSES matrix library

 \rightarrow Matrix data in our real problem with the matrix size of M = $10^2 \sim 10^6$

→For further collaboration between physics and applied mathematics

Note : Matrix property is significantly different among materials.

(b) amorphous-like conjugated polymer (poly(9,9) dioctil fluorene)

Summary

- 1. Overview : Application-Algorithm-Architecture co-design
 - 1-a. Overview from physics
 - 1-b. ELSES : our code
 - 1-c. Overview from mathematics
- 2. Krylov-subspace theories
 - for generalized shifted linear equation
- 3. 'Big data' (post-simulation) analysis.
- 4. Perforcance issues on the supercomputer
- 5. For further collaboration
 - between physics and applied mathematics.
 - 5-a. Interior eigen-pair problem
 - 5-b. 'Open data' for matrix