流体力学II	グループワーク	学籍番号	名前
		学籍番号	名前
		七 /	1 (広田数理工学科) 2014 05 00

圧力による力積の計算

- 流体中の圧力場を p = p(x, y, z, t) とする
- 各辺がx軸・y軸・z軸に平行であるような微小な直方体を考える(体積 $\Delta V = \Delta x \Delta y \Delta z$) \rightarrow この直方体が時間 Δt のあいだに受ける力積は?

圧力によって色の面が受ける力 = $(p|_x \Delta y \Delta z, 0, 0)$

圧力によって の面が受ける 力 = $(-p|_{x+\Delta x} \Delta y \Delta z, \ 0, \ 0)$ \cdots

$$(\textcircled{5} + \textcircled{0}) \times \Delta t = \left(-\frac{p|_{x + \Delta x} - p|_{x}}{\Delta x}, \ 0, \ 0\right) \Delta x \Delta y \Delta z \Delta t \rightarrow \left(-\frac{\partial p}{\partial x}, \ 0, \ 0\right) \Delta V \Delta t$$

働の面について 面の方向 = (0, -1, 0)

··· (7)

愛の面について 面の方向 = (0,1,0)

圧力によって優の面が受ける力 = $\left(0, -p|_{y+\Delta y} \Delta z \Delta x, 0\right)$ · · · · ②

$$(\textcircled{3} + \textcircled{3}) \times \Delta t \; = \; \qquad \qquad \rightarrow \left(0, \; -\frac{\partial p}{\partial y} \; , \; 0\right) \Delta V \Delta t$$

①の面について

··· (F)

①の面について

··· (5)

すべての面の寄与を合計

[圧力による力積] = (あ +
$$\Theta$$
 + Θ + Θ + Θ + Θ) Δt = $-(\operatorname{grad} p) \Delta V \Delta t$