簡単な ODE の解析解を差分で求める

例 1 $\frac{\mathrm{d}x}{\mathrm{d}t} = kx$ (k は定数); 初期条件 $x|_{t=t_0} = x_0$.

 $t_n = t_0 + n\Delta t, \ x_n = x(t_n)$ として差分化すると

$$\frac{x_{n+1} - x_n}{\Delta t} = kx_n$$

分母を払って整理し

$$x_{n+1} = (1 + k\Delta t)x_n \tag{1}$$

式 (1) は等比数列の漸化式. 初期条件 x_0 が分かっているので, 一般項は

$$x_n = x_0 (1 + k\Delta t)^n = x_0 \left(1 + \frac{k(t_n - t_0)}{n} \right)^n$$
 (2)

ここで $\Delta t
ightarrow 0$ すなわち $n
ightarrow +\infty$ の極限をとり, $t_n
ightarrow t$ として

$$x_n \to x(t) = \lim_{n \to +\infty} x_0 \left(1 + \frac{k(t - t_0)}{n} \right)^n = x_0 e^{k(t - t_0)}$$
 (3)

検算:解(3)をもとの方程式の両辺にそれぞれ代入.

[左辺] =
$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(x_0 e^{k(t-t_0)} \right) = kx_0 e^{k(t-t_0)}$$

[右辺] = $kx = kx_0 e^{k(t-t_0)}$

したがって左辺と右辺が等しいので等号が成立し、確かに解である.

例 2 $\frac{\mathrm{d}v}{\mathrm{d}t}=a$ (a は定数); 初期条件 $v|_{t=t_0}=v_0$.

例1と同じように差分化し、分母を払って整理:

$$\frac{v_{n+1} - v_n}{\Delta t} = a \quad$$
すなわち
$$v_{n+1} = v_n + a\Delta t. \tag{4}$$

式(4)は等差数列の漸化式であり、一般項は

$$v_n = v_0 + na\Delta t \tag{5}$$

これに $\Delta t = (t_n - t_0)/n$ を代入し, $n \to +\infty$ の極限を考えて $t_n \to t$ とすると

$$v_n \to v(t) = v_0 + a(t - t_0).$$
 (6)

検算:

[左辺] =
$$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(v_0 + a \left(t - t_0 \right) \right) = a = [右辺]$$