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1  偏微分⽅程式と差分近似

物理シミュレーション講義資料   加藤

1. 偏微分⽅程式  (sec. 2.1)
    本講義で扱う偏微分⽅程式の紹介
  1-1 線形/非線形
     1-2 初期条件と境界条件
     1-3  2階線形偏微分⽅程式の分類
2. 差分近似 (sec. 2.3)
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1  偏微分⽅程式
この講義で扱う⽅程式は，主に2階線形の偏微分⽅程式
＊ 1次元拡散⽅程式
＊ 1次元波動⽅程式
＊ 2次元ラプラス⽅程式，ポアソン⽅程式
u は t，x，ｙなどの関数  ←  未知関数(これを求めたい）
a, b は定数，または t，x，ｙなどの関数   ← 既知

∂2u
∂ t2 =a ∂2u∂ x2  (+b)

∂u
∂ t = a ∂2u∂ x2  (+b)

∂2u
∂ x2 +

∂2u
∂ y2 = b

 （主にこんなもの）

  3

⽤語の説明
○ N次元とは?  → (本講義ではたいがい) 空間N次元の意味．
     独⽴変数の物理的意味:  t を時間，x, y を空間と思っている.
○ 線形⽅程式とは?            uが登場する部分をまとめて L[u] と表す  
      → 次の2式を満たすなら線形．満たさないなら非線形．
     (1) L[f+g] = L[f] + L[g],     (2) L[c f] = c L[f]   (c は定数)
○ 同次/非同次
    L[u] = 0 :  同次⽅程式
    L[u] = (0以外の, 与えられた関数) :  非同次⽅程式   4

1-1  線形/非線形　　　　　　　　　　          → レポート1 問1

                    が 次の2式を満たすから，これは線形⽅程式だ．  
   (1)   L[f+g] = L[f] + L[g],     (2)   L[c f] = c L[f]   (c は定数)
--------------------------------------------------------------------
線形だと何がうれしいか? 
   ☆( 1)  f と g が L[u]=0 の解なら，c1 f+ c2 g も L[u]=0 の解になる．
   ☆( 2)  f が L[u]=b1 の解で， g が L[u]=b2 の解なら，
              c1 f + c2 g は L[u]=c1 b1+ c2 b2 の解になる．
非線形⽅程式だと，⼀般に ☆ ☆( 1) ( 2)は成り⽴たない．

例: ∂u∂ t =3 ∂
2u

∂ x2
+ 1+e� x   (L[u ]=∂u

∂ t �3
∂2u
∂ x 2とおくと L[u ]=1+e� x)

L [u]=ut�3uxx
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1-2  初期条件と境界条件
解を 1つに定めるためには，
(⼤雑把に⾔うと) 微分階数の分だけ条件が必要．
----------------------------------------------------------

   時間 t について 2階微分 → 条件が 2個必要
   

   式(1)(2) を 初期値問題 と呼ぶ．
初期条件 u(0)= f 1,  du

dt (0) = f 2.                (2)

例1: d2ud t2=au ,  u=u(t) ,  0<t<∞ .                   (1)
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   空間 x について 2階微分 → 条件が 2個必要

   式(1)(2) を 境界値問題 と呼ぶ．
----------------------------------------------------     
境界値問題の⽤語
   両端で u を与える:             Dirichlet (ディレクレ)問題 (第1種境界値問題)
   両端で du/dx を与える:      Neumann (ノイマン)問題  (第2種境界値問題)
   両端で u + c du/dx を与える:  Robin (ロバン)問題      (第3種境界値問題)
   ⽚⽅で u,  もう⽚⽅で du/dx を与える:  混合型境界値問題

境界条件 u(0)= g1,  u(1)= g2.                  (2)

例2: d
2u

d x 2=au ,  u=u( x ) ,  0<x<1.                    (1)
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  時間 t について 1階微分 → 条件が 1個必要

  空間 x について 2階微分 → 条件が 2個必要

  式(1)(2)(3)を 初期値境界値問題 と呼ぶ．

例3: ∂u∂ t = a ∂2u
∂ x2

,   u=u( x , t ) ,  0< x<1 ,  0<t<∞ .  (1)

初期条件 u(x ,0)=f (x )                               (2)

境界条件 u(0, t )=g1(t ) ,  u(1, t )=g2(t )            (3)
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1-3   2階線形⽅程式の分類
2階線形偏微分⽅程式の⼀般的な形

A ∂2u
∂ x2 + B ∂2u

∂ x∂ y + C ∂2u
∂ y2 + D ∂u

∂ x + E ∂u
∂ y + F u=G

 (空間1次元問題で) 熱や物質などの拡散 
 (空間1次元問題で) 振動，波動
 (空間2次元で) 拡散問題の定常状態

＊B2�4 AC=0: 放物型
＊B2�4 AC > 0: 双曲型
＊B2�4 AC < 0: 楕円型

A, B, …, G は 定数 または x, y の関数．
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2階線形⽅程式の標準形

⼀般の式は，変数変換によって上の3つに帰着する

* 放物型 ∂2u∂ x2 =⋯

* 双曲型 ∂2u
∂ x∂ y =⋯  (または ∂2u∂ x2 �

∂2u
∂ y2 =⋯)

* 楕円型 ∂2u∂ x2 +
∂2u
∂ y2 =⋯

→ レポート1  問2

⋯は,u, ux , uyと既知関数を含む項
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2.  差分法とはどんな数値解法か?

(1) 連続変数 x を離散化する．
例: d

2u
d x 2 +

d u
d x +u= f ( x ) ,  a < x < b

(2) 導関数は，差分商で近似する．

x i= a + h i ,  (i=0,⋯N)
h=(b�a)/N.

ui= u(xi) この値を求めるの
が差分法の目標．

x

u

x1 x2 x3 x4

u1

u2

u3 u4
u0

x0

(3)   についての⽅程式を解く．ui

h
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u(xi+h)= u(xi) + du
dx (xi) h+

1
2
d2u
d x2

(x i) h2+⋯   (1)
 について解くと，du

dx du
dx (xi)=

u(x i+h)�u(xi)
h +O(h)

前進差分
を x=xi  中⼼のテイラー級数に展開する．u(xi+h)

O(h)を無視すると
du
dx (xi)≃

u(xi+h)�u(xi)
h

( hと同じかそれより⼩さい量)
前進差分近似の誤差は O(h) x i+h

u

xi
x

2-1.  1階導関数の差分近似 [ u=u(x) のとき ]
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u(xi�h)= u(xi)� du
dx (xi) h+

1
2
d2u
d x2

( xi) h2+⋯   (2)
 について解くと，du

dx du
dx (xi)=

u(xi)�u(xi�h)
∆ x +O(h)

を x=xi  中⼼のテイラー級数に展開する．u(xi�h)

O(h)を無視すると
du
dx (xi)≃

u(xi)�u(xi�h)
h

後退差分近似の誤差は O(h) x ix i�h
x

u

後退差分
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 式(1) - 式(2) から
du
dx ( xi)=

u(x i+h)�u(xi�h)
2h +O(h2)

O(h2)を無視すると
du
dx (xi)≃

u(xi+h)�u(xi�h)
2h

u( xi+h)= u(xi) + du
dx (xi) h+

1
2
d2u
d x2 (xi) h

2+⋯   (1)
u(xi�h)= u(xi)� du

dx (xi) h+
1
2
d2u
d x2 ( xi) h

2+⋯   (2)

中⼼差分近似の誤差は O(h2) xi+hx ixi�h

u

x

中⼼差分
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2-2.   2階導関数の差分近似 [ u=u(x) のとき ]

 式(1) + 式(2) から
d2u
dx2 (xi)=

u(x i+h)�2u(xi)+u(xi�h)
h2 +O (h2)

O(h2)を無視すると

u(xi+h)= u(xi) + du
dx (xi) h+

1
2
d2u
d x2 (xi) h

2+⋯   (1)
u(xi�h)= u(xi)� du

dx (xi) h+
1
2
d2u
d x2 ( xi) h

2+⋯   (2)

d2u
dx2 (xi)≃

u(xi+h)�2u(xi)+u(xi�h)
h2
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2階導関数の差分近似．別の導出⽅法．
d2u
dx2 (xi)≃

u(xi+h)�2u(xi)+u(xi�h)
h2

d2u
dx2 (xi) =

d
dx

du
dx (xi)

= 1
h[ dudx (xi+h)� du

dx (xi)]
= 1
h[u(xi+h)�u(xi)

h � u(x i)�u(xi�h)
h ]

= u(x i+h)�2u(xi)+u(xi�h)
h2

← 前進差分で近似

← 後退差分で近似

前進差分と後退差分の順番は逆でもよい．   16

2-3.   偏導関数の差分近似 [ u=u(x, y) のとき ]

連続変数 x, y を離散化する
xi= a + h i  (i=0,⋯M ) ,
    h=(b�a)/M .

ui , j = u(x i , y j)

y j = c + k j  ( j=0,⋯N) ,
    k=(d�c)/N.

例: ∂
2u

∂ x 2 +
∂2u
∂ y2= f (x , y ) ,  a < x < b , c < y < d

x

y

a b

c

d

j =0
j =1j =2

j =N

i =Mi =0 i =1 i =2

k
h
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ui±1, j = ui , j ±(∂u∂ x)i , j h+ 1
2(∂2u

∂ x2)i , j h2±⋯

１階偏導関数の差分近似

前進差分 (∂u∂ x )i , j ≃ ui+1, j�ui , j
h

後退差分 (∂u∂ x )i , j ≃ ui , j�ui�1, j
h

中⼼差分 (∂u∂ x )i , j ≃ ui+1, j�ui�1, j
2h

1変数関数のときと同じ⼿順をふむと

後退 (∂u∂ y)i , j ≃ ui , j�ui , j�1
k

中⼼ ( ∂u∂ y)i , j ≃ ui , j+1�ui , j�1
2k

前進 ( ∂u∂ y)i , j ≃ ui , j+1�ui , j
k

y⽅向の場合はこう．

ui±1, j=u(xi±h, y j)を (x , y)=(xi , y j)中⼼のテイラー級数に展開する
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2階偏導関数の差分近似 uxx，uyy

(∂2u
∂ x2)i , j ≃ ui+1, j�2ui , j+ui�1, j

h2

1変数関数のときと同じ⼿順で

(∂2u
∂ y2)i , j ≃ ui , j+1�2ui , j+ui , j�1

k2

ui±1, j =ui , j ±(∂u∂ x)i , j h+ 1
2(∂2u

∂ x2)i , j h2±⋯  から

ui , j±1=ui , j ±(∂u∂ y)i , j k + 1
2( ∂2u

∂ y2)i , j k2±⋯  から

i+1, ji�1, j i , j

i , j�1

i , j+1
i , j
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お  し  ま  い
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レポート1

問1  線形/非線形．⾒きわめと証明．
問2  2階偏微分⽅程式の分類に関して
  * 変数変換の練習．
  * 標準形へ変形すること．

See 別紙
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i+1, j�1

i+1, j+1

i�1, j�1

i�1, j+1

i , j

ui+1, j+1= ui , j + (∂u∂ x)i , j h+( ∂u∂ y)i , j k + 1
2(∂2u

∂ x2)i , j h2+( ∂2u
∂ x∂ y)i , j hk + 1

2( ∂2u
∂ y2)i , j k2+⋯  (1)

ui+1, j�1= ui , j +(∂u∂ x)i , j h�( ∂u∂ y)i , j k + 1
2(∂2u

∂ x2)i , j h2�( ∂2u
∂ x∂ y)i , j hk + 1

2( ∂2u
∂ y2)i , j k2+⋯  (2)

ui�1, j+1=ui , j �(∂u∂ x)i , j h+( ∂u∂ y)i , j k + 1
2(∂2u

∂ x2)i , j h2�( ∂2u
∂ x∂ y)i , j hk + 1

2( ∂2u
∂ y2)i , j k2+⋯  (3)

ui�1, j�1=ui , j�(∂u∂ x )i , j h�( ∂u∂ y)i , j k + 1
2(∂2u

∂ x2)i , j h2 +( ∂2u
∂ x∂ y)i , j hk + 1

2( ∂2u
∂ y2)i , j k2+⋯  (4)

ui±1, j±1=u(xi±h, y j±k)を (x , y)=(xi , y j)中⼼に展開

2階偏導関数の差分近似． 
uxy の差分近似はどんなんか? 

(1)-(2)-(3)+(4)とすると，右辺には uxy (と4次以上の項)だけ残る

おまけ情報: 余裕のある⼈向けの話
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(1) – (2) – (3) + (4) を          について解いて，
⾼次の項を無視すると

∂2u
∂ x∂ y

( ∂2u
∂ x∂ y)i , j ≃ ui+1, j+1�ui+1, j�1+ ui�1, j+1+ ui�1. j�1

4hk

i+1, j�1

i+1, j+1

i�1, j�1

i�1, j+1

i , j


