研究業績

国際誌

  1. *H. Niinomi, T. Yamazaki, H. Nada, T. Hama, A. Kouchi, T. Oshikiri, M. Nakagawa, and *Y. Kimura, "Chiral Spinodal-like Ordering of Homoimmiscible Water at Interface between Water and Chiral Ice III", J. Phys. Chem. Lett. 15 (2024) 659.
  2. *T. Yamazaki, A. Kouchi, K. Murata, H. Katsuno, H. Nada, T. Hama, and Y. Kimura, "In Situ Cryogenic Transmission Electron Microscopy Observation on the Formation of Hydrogen-Ordered Hexagonal Ices and Its Astrophysical Implications", MNRAS, 527 (2023) 2858-2868.
  3. *H. Niinomi, T. Yamazaki, H. Nada, T. Hama, A. Kouchi, T. Oshikiri, M. Nakagawa, and *Y. Kimura, "Anisotropy in Spinodal-like Dynamics of Unknown Water at Ice V-Water Interface", Scientific Reports, 13 (2023) 16227.
  4. A. Kouchi, T. Yamazaki, H. Katsuno, H. Nada, T. Hama, and *Y. Kimura, "Observation of Hydrogen-Ordered Cubic Ice Thin Films on the Surface of Ice Ic Nanocrystals upon Coarsening", Chemical Physics, 572 (2023) 111966.
  5. M. Sakakibara, H. Nada, *T. Nakamuro, and *E. Nakamura, "Cinematographic Recording of a Metastable Floating Island in Two- and Three-Dimensional Crystal Growth", ACS Central Science, 8 (2022) 1704-1710.
  6. *H. Nada, "Effect of Nitrogen Molecules on the Growth Kinetics at the Interface Between a (111) Plane of Cubic Ice and Water", J. Chem. Phys., 157 (2022) 124701.
  7. *H. Nada, "Stable Binding Conformations of Polymaleic and Polyacrylic Acids at a Calcite Surface in the Presence of Countercations: A Metadynamics Study", Langmuir, 38 (2022) 7046-7057.
  8. *H. Niinomi, A. Kouchi, T. Hama, H. Nada, T. Yamazaki, and *Y. Kimura, "Low- and High-Density Unknown Waters at Ice-Water Interfaces", J. Phys. Chem. Lett., 13 (2022) 4251-4256.
  9. T. Nakamuro, M. Sakakibara, H. Nada, K. Harano, and *E. Nakamura, "Capturing the Moment of Emergence of Crystal Nucleus from Disorder", J. Am. Chem. Soc., 143 (2021) 1763-1767.
  10. *H. Nada, "Melt Crystallization Mechanism Analyzed with Dimensional Reduction of High-Dimensional Data Representing Distribution Function Geometries", Sci. Rep., 10 (2020) 15465.
  11. *H. Niinomi, T. Yamazaki, H. Nada, T. Hama, A. Kouchi, J. T. Okada, J. Nozawa, S. Uda, and *Y. Kimura, "Higi-Density Liquid Water at a Water-Ice Interface", J. Phys. Chem. Lett., 11 (2020) 6779-6784.
  12. D. Kuo, M. Liu, K. R. S. Kumar, K. Hamaguchi, K. P. Gan, *T. Sakamoto, T. Ogawa, R. Kato, N. Miyamoto, H. Nada, M. Kimura, M. Henmi, *H. Katayama, and *T. Kato, "High Virus Removal by Self-Organized Nanostructured Two-Dimensional Liquid-Crystalline Smectic Membranes for Water Treatment", Small, 16 (2020) 2001721.
  13. *H. Nada, "Pathways for the Formation of Ice Polymorphs from Water Predicted by a Metadynamics Method", Sci. Rep., 10 (2020) 4708.
  14. *H. Nada, T. Sakamoto, M. Henmi, T. Ogawa, M. Kimura, and *T. Kato, "Transport Mechanisms of Water Molecules and Ions in Sub-Nano Channels of Nanostructured Water Treatment Liquid-Crystalline Membranes: A Molecular Dynamics Simulation Study", Environ. Sci.: Water Res. & Technol., 6 (2020) 604-611.
  15. *H. Nada, M. Kobayashi, and M. Kakihana, "Anisotropy in Stable Conformations of Hydroxylate Ions Between the {001} and {110} Planes of TiO2 Rutile Crystals for Glycolate, Lactate, and 2-Hydroxybutyrate Ions Studied by Metadynamics Method", ACS Omega, 4 (2019) 11014-11024.
  16. Y.-J. Kim, Y.-H. Lee, S. Lee, *H. Nada, and *G.W. Lee, "Shock Growth of Ice Crystal Near Equilibrium Melting Pressure Under Dynamic Compression", Proc. Natl. Acad. Sci. U.S.A., 116 (2019) 8679-8684.
  17. *H. Nada, "Computer Simulations: Essential Tools for Crystal Growth Studies", Crystals, 8 (2018) 314.
  18. *H. Nada, "A New Methodology for Evaluating the Structural Similarity between Different Phases Using a Dimensionality Reduction Technique", ACS Omega, 3 (2018) 5789-5798.
  19. *T. Sakamoto, T. Ogawa, *H. Nada, K. Nakatsuji, M. Mitani, B. Soberats, K. Kawata, M. Yoshio, H. Tomioka, T. Sasaki, M. Kimura, *M. Henmi, and *T. Kato, "Development of Nanostructured Water Treatment Membranes Based on Thermotropic Liquid Crystals: Molecular Design of Sub-Nanoporous Materials", Adv. Sci., 5 (2018) 1700405.
  20. *H. Nada, "Anisotropy in Geometrically Rough Structure of Ice Prismatic Plane Interface During Growth: Development of a Modified Six-Site Model of H2O and a Molecular Dynamics Simulation", J. Chem. Phys., 145 (2016) 244706.
  21. *H. Nada, T. Nishimura, T. Sakamoto, and T. Kato, "Heterogeneous Growth of Calcite at Aragonite {001}- and Vaterite {001}-Melt Interfaces: A Molecular Dynamics Simulation Study", J. Cryst. Growth 450 (2016) 148-159.
  22. *H. Nada, M. Kobayashi, and M. Kakihana, "Anisotropy in Conformation and Dynamics of a Glycolate Ion Near the Surface of a TiO2 Rutile Crystal Between Its {001} and {110} Planes: A Molecular Dynamics Study", J. Phys. Chem. C 120 (2016) 6502-6514.
  23. *H. Nada, H. Miura, J. Kawano, and T. Irisawa, "Observing Crystal Growth Processes in Computer Simulations", Prog. Crystal Growth Character. Mater. 62 (2016) 404-407.
  24. *H. Nada, "Importance of Water in the Control of Calcite Crystal Growth by Organic Molecules", Polymer J. 47 (2015) 84-88.
  25. *H. Nada, "Difference in the Conformation and Dynamics of Aspartic Acid on the Flat Regions, Step Edges, and Kinks of a Calcite Surface: A Molecular Dynamics Study", J. Phys. Chem. C 118 (2014) 14335-14345.
  26. H. Tomono, *H. Nada, F. Zhu, T. Sakamoto, T. Nishimura and T. Kato, "Effects of Magnesium Ions and Water Molecules on the Structure of Amorphous Calcium Carbonate: A Molecular Dynamics Study", J. Phys. Chem. B 117 (2013) 14849-14856.
  27. F. Zhu, *T. Nishimura, T. Sakamoto, H. Tomono, *H. Nada, Y. Okumura, H. Kikuchi, *T. Kato, "Tuning the Stability of CaCO3 Crystals with Magnesium Ions for Formation of Aragonite Thin Films on Organic Polymer Templates", Chem. Asian J. 8 (2013) 3002-3009 (Selected for Back Cover Picture).
  28. *H. Nada and Y. Furukawa, "Antifreeze Proteins: Computer Simulation Studies on the Mechanism of Ice Growth Inhibition", Polymer J. 44 (2012) 690-698 (Invited Review Paper, Selected for Cover Picture).
  29. *H. Nada and Y. Furukawa, "Growth Inhibition at the Ice Prismatic Plane Induced by a Spruce Budworm Antifreeze Protein: A Molecular Dynamics Simulation Study", Phys. Chem. Chem. Phys. 13 (2011) 19936-19942.
  30. *H. Nada, "Analysis of Ice Crystal Growth Shape under High Pressure Using Molecular Dynamics Simulation", Cryst. Growth & Des. 11 (2011) 3130-3136.
  31. *H. Nada, "A Challenge to Observe Ice Growth Shape in Molecular Dynamics Simulation", Physics and Chemistry of Ice 2010, (2011) 293-298.
  32. *H. Nada and Y. Furukawa, "Growth Mechanism of a Hexagonal Bipyramidal Ice Crystal in the Presence of Winter Flounder Antifreeze Proteins", Physics and Chemistry of Ice 2010, (2011) 429-436.
  33. *H. Nada, S. Zepeda, H. Miura and Y. Furukawa, "Significant Alternations in Anisotropic Ice Growth Rate Induced by the Ice Nucleation-Active Bacteria Xanthomonas Campestris", Chem. Phys. Lett. 498 (2010) 101-106.
  34. *H. Nada, "Anisotropy in Growth Kinetics of Tetrahydrofuran Clathrate Hydrate: a Molecular Dynamics Study", J. Phys. Chem. B 113 (2009) 4790-4798.
  35. *H. Nada and Y. Furukawa, "Growth Inhibition Mechanism of Ice-Water Interfaces by a Mutant of Winter Flounder Antifreeze Protein: A Molecular Dynamics Study", J. Phys. Chem. B 112 (2008) 7111-7119.
  36. *H. Nada, "Mechanism of Cage Formation during Growth of CH4 and Xe Clathrate Hydrates: A Molecular Dynamics Study", Physics and Chemistry of Ice (Royal Society of Chemistry), (2007) 435-442.
  37. *H. Nada and Y. Furukawa, "Growth Kinetics of Interfaces between a {2021} Plane of Ice and Water Studied by Molecular Dynamics Simulations", Physics and Chemistry of Ice (Royal Society of Chemistry), (2007) 443-450.
  38. *H. Nada, "Growth Mechanism of a Gas Clathrate Hydrate from a Dilute Aqueous Gas Solution: A Molecular Dynamics Simulation of a Three-Phase System", J. Phys. Chem. B 110 (2006) 16526-16534.
  39. *H. Nada and Y. Furukawa, "Anisotropy in Growth Kinetics at Interfaces between Proton-Disordered Hexagonal Ice and Water: A Molecular Dynamic Study Using the Six-Site Model of H2O", J. Cryst. Growth 283 (2005) 242-256.
  40. *H. Nada, J.P. van der Eerden and Y. Furukawa, "A Clear Observation of Crystal Growth of Ice from Water: A Molecular Dynamics Simulation with a Six-Site Model of H2O", J. Cryst. Growth 266 (2004) 297-302.
  41. *H. Nada and J.P.J.M. van der Eerden, "An Intermolecular Potential Model for the Simulation of Ice and Water near the Melting Point: A Six-Site Model of H2O", J. Chem. Phys., 118 (2003) 7401-7413.
  42. *H. Nada and Y. Furukawa, "Anisotropy in structural transitions between basal and prismatic faces of ice studied by molecular dynamics simulation", Surf. Sci., 446, (2000) 1-16.
  43. *Y. Furukawa and H. Nada, "Anisotropy in microscopic structures of ice-water and ice-vapor interfaces and its relation to growth kinetics", Adv. in the Understanding of Cryst. Growth Mechanism (Elsevier Sci. Pub. B.V.), (1997) 559-573.
  44. *H. Nada and Y. Furukawa, "Anisotropy in structural phase transitions at ice surfaces: a molecular dynamics study", Appl. Surf. Sci., 121/122 (1997) 445-447.
  45. *Y. Furukawa and H. Nada, "Anisotropic surface melting of an ice crystal and its relationship to growth forms", J. Phys. Chem. B, 101 (1997) 6167-6170.
  46. *H. Nada and Y. Furukawa, "Anisotropy in molecular-scaled growth kinetics at ice-water interfaces", J. Phys. Chem. B, 101 (1997) 6163-6166.
  47. *H. Nada, "Growth kinetics at ice-water interfaces: A molecular dynamics simulation study", Proc. of 2nd Int. Conf. on Natural Gas Hydrates, (1996) 363-370.
  48. H. Nada and *Y. Furukawa, "Anisotropic growth kinetics of ice crystals from water studied by molecular dynamics simulation", J. Cryst. Growth, 169 (1996) 587-597.
  49. H. Nada and *Y. Furukawa, "Anisotropic properties of ice/water interface: A molecular dynamics study", Jpn. J. Appl. Phys., 34 (1995) 583-588.
  50. H. Nada and *Y. Furukawa, "Molecular dynamics study of surface melting on ice crystal", The Structure of Surfaces (World Sci. Pub.), (1994) 543-547.
  51. H. Nada and *Y. Furukawa, "Molecular dynamics simulations of ice crystal surfaces at temperatures just below the melting point", Trans. Mat. Res. Soc. Jpn., 16A (1994) 453-455.

国内誌

  1. 灘 浩樹、氷の形成経路をメタダイナミクスで探る、アンサンブル、Vol. 23, No. 1 (2021) 16-19.
  2. 灘 浩樹、多次元秩序変数の次元削減で結晶化のメカニズムを可視化する、日本結晶成長学会誌、Vol. 47, No. 4 (2020) 05.
  3. 灘 浩樹、水はどうやって氷に変わるか? -メタダイナミクスが解き明かす氷の構造のでき方、化学、Vol. 75, No. 9 (2020) 24-28.
  4. 灘 浩樹、伴野 秀和、西村 達也、坂本 健、加藤 隆史、アモルファス炭酸カルシウムの構造とそこから核生成する結晶構造との関係:分子動力学シミュレーション研究、日本結晶成長学会誌 44 (2017) 25-30.
  5. 灘 浩樹、不凍タンパク質の氷界面吸着と成長抑制 -シミュレーションで探る不凍のメカニズム、化学と工業 69 (2016) 642-644.
  6. 西村 達也、朱方 捷、伴野 秀和、灘 浩樹、加藤 隆史、バイオミネラリゼーションに学ぶ有機/無機複合体の設計と合成:高分子およびマグネシウムイオンによる炭酸カルシウムのモルホロジー制御、オレオサイエンス 14 (2014) 417-423.
  7. 灘 浩樹、高圧力下における氷の結晶成長シミュレーション、分子シミュレーション研究会誌 アンサンブル 15 (2013) 157-161.
  8. 灘 浩樹、不凍タンパク質の氷界面吸着に関する分子動力学シミュレーション研究、低温科学 71 (2013) 23-28.
  9. 灘 浩樹、不凍タンパク質による氷の成長抑制:理論と計算科学研究、冷凍 86 (2011) 545-550.
  10. 灘 浩樹、不凍タンパク質による氷の成長抑制機構、日本結晶成長学会誌 35 (2008) 161-170.
  11. 灘 浩樹、氷とガスハイドレートの結晶成長過程:分子動力学シミュレーション研究、真空 50 (2007) 276-281.
  12. 灘 浩樹、J.P. van der Eerden, 古川義純、氷の結晶成長機構を探る:新しい水分子モデルの開発と分子動力学シミュレーション、低温科学 64 (2006) 77-87.
  13. 灘 浩樹、水の結晶化に関する分子動力学シミュレーション研究、日本結晶成長学会誌 33 (2006) 59-66.
  14. 灘 浩樹、分子レベルでのメタンハイドレートの生成機構、資源と環境 8 (1999) 315-323.
  15. 灘 浩樹、メタンハイドレートの生成機構:分子シミュレーションによるアプローチ、資源と環境 7 (1998) 205-215.
  16. 灘 浩樹、古川 義純、氷に関する最近の分子動力学シミュレーション ― 分子レベルでの氷結晶の融液成長機構、雪氷 58 (1996) 179-180.
  17. 古川 義純、灘 浩樹、石崎 武志、氷結晶の表面・界面遷移層の構造とその動的性質、日本結晶成長学会誌 21 (1994) S521-S528.

著書等

  1. 灘 浩樹、"分子動力学計算と次元削減アルゴリズムによる炭酸カルシウムのアモルファスと結晶との構造類似度解析"、マテリアルズ・インフォマティクスによる材料開発と活用集 第13節、技術情報協会、2019.
  2. H. Nada (ed.), “Advances in Computer Simulation Studies on Crystal Growth”, MDPI Books, 2018. (https://www.mdpi.com/books/pdfview/book/863)
  3. 灘 浩樹、"不凍タンパク質による氷成長抑制の分子レベル機構"、不凍タンパク質の機能と応用 第5章、シーエムシー出版、2018.
  4. 灘 浩樹、"氷結晶の成長機構"および"生物の耐凍結戦略"、低温環境の科学事典、朝倉書店、2016.
  5. 灘 浩樹、"雪や氷の結晶成長はどこまでわかっているか?"、現代表面科学シリーズ【6巻】問題と解説で学ぶ表面科学、日本表面科学会編、共立出版、2013.
  6. 灘 浩樹、"北極海の魚の体液は何故氷点下でも凍結しない?"、現代表面科学シリーズ【6巻】問題と解説で学ぶ表面科学、日本表面科学会編、共立出版、2013.
  7. Y. Furukawa, G. Sazaki and H. Nada, "Surface of Ice", in: Surface and Interface Science, Volume 3: Surfaces of Multi-component Solids (Alloy, Compound Semiconductors), K. Wandelt (ed.), Wiley-VCH, 2013 (Selected for Cover Picture).
  8. 灘 浩樹、"氷核タンパク質"、雪氷辞典、日本雪氷学会編、2013.